Affiliation:
1. Department of Civil Engineering, Kansas State University, Manhattan, KS 66506
Abstract
A backpropagation artificial neural network (ANN) algorithm with one hidden layer was used as a new numerical approach to characterize the soil liquefaction potential. For this purpose, 61 field data sets representing various earthquake sites from around the world were used. To develop the most accurate prediction model for liquefaction potential, alternating combinations of input parameters were used during the training and testing phases of the developed network. The accuracy of the designed network was validated against an additional 44 records not used previously in either the network training or testing stages. The prediction accuracy of the neural network approach–based model is compared with predictions obtained by using fuzzy logic and statistically based approaches. Overall, the ANN model outperformed all other investigated approaches.
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献