Estimation of Frequency and Length of Pedestrian Stride in Urban Environments with Video Sensors

Author:

Saunier Nicolas1,Husseini Ali El1,Ismail Karim2,Morency Catherine1,Auberlet Jean-Michel3,Sayed Tarek4

Affiliation:

1. Department of Civil, Geological, and Mining Engineering, École Polytechnique de Montréal, C.P. 6079, Succursale Centre-Ville, Montreal, Quebec H3C 3A7, Canada.

2. Department of Civil Engineering, Carleton University, 1125-3432 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.

3. Université Paris Est, Laboratoire Exploitation, Perception, Simulateurs et Simulations, Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux, 58 Boulevard Lefèbvre, F-75732 Paris CEDEX 15, France.

4. Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.

Abstract

An emphasis on active modes of transportation, that is, walking and cycling, has recently been renewed amid concerns for the environment and public health. However, the focus of research and practice that these modes have traditionally received is secondary to that received by motorized modes. As a consequence, the data on pedestrians (in particular, microscopic data) required for analysis and modeling are lacking. For instance, accurate data on the length of individual stride are not available in the transportation literature. This paper proposes a simple method to extract frequency and length of pedestrian stride automatically from video data collected nonintrusively in outdoor urban environments. The walking speed of a pedestrian oscillates during each stride; the oscillation can be identified through the frequency analysis of the speed signal. The method was validated with real-world data collected in Rouen, France, and Vancouver, Canada, where the root mean square errors for stride length were 6.1 and 5.7 cm, respectively. A method to distinguish pedestrians from motorized vehicles is proposed and used to analyze the 50 min of the Rouen data set to provide the distributions of stride frequency and length.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3