Preventing Swelling and Decreasing Alkalinity of Steel Slags Used in Highway Infrastructures

Author:

Dayioglu Asli Y.1,Aydilek Ahmet H.1,Cetin Bora2

Affiliation:

1. Department of Civil and Environmental Engineering, University of Maryland, College Park, 1173 Glenn L. Martin Hall, College Park, MD, 20742.

2. Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701.

Abstract

Steel slag is a byproduct of iron and steel production by the metallurgical industries. Annually, 21 million tons of steel slags are produced in the United States, and most of this slag is landfilled. Landfilling represents significant economic loss and uses valuable land space. Although steel slag has great potential for use in highway applications, especially as a granular highway base or subbase material, it has not been used extensively because of its high swelling potential and alkalinity. Swelling potential deteriorates the structural stability of highways, and high alkalinity poses an environmental challenge. This study seeks a methodology that promotes the use of steel slags in highway base and subbase layers by minimizing these two main disadvantages. Two treatment methods were used. In the first method, steel slag material was coated with bituminous material. In the second method, the slag was mixed with water treatment residuals at various percentages by weight. The mixtures prepared in this study were subjected to accelerated swelling tests and batch water leach tests. Results of the swelling tests indicated that the addition of both water treatment residuals and bituminous material into steel slag decreased the swelling rate significantly. Furthermore, bituminous-coated mixtures did not exhibit any swelling. These two methods also decreased the effluent pH of steel slag from 12.3 to 11.65 (bitumen-coated slag) and 9.8 (slag mixed with water treatment residuals). The batch test results did not satisfy the pH 8.5 limit regulated by the Maryland Department of Environment for placement of industrial byproducts in highways.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3