General Lane-Changing Model MOBIL for Car-Following Models

Author:

Kesting Arne1,Treiber Martin1,Helbing Dirk1

Affiliation:

1. Institute for Transport and Economics, Technische Universität Dresden, Andreas-Schubert-Strasse 23, D-01062 Dresden, Germany.

Abstract

A general model (minimizing overall braking induced by lane change, MOBIL) is proposed to derive lane-changing rules for discretionary and mandatory lane changes for a wide class of car-following models. Both the utility of a given lane and the risk associated with lane changes are determined in terms of longitudinal accelerations calculated with microscopic traffic models. This determination allows for the formulation of compact and general safety and incentive criteria for both symmetric and asymmetric passing rules. Moreover, anticipative elements and the crucial influence of velocity differences of these car-following models are automatically transferred to the lane-changing rules. Although the safety criterion prevents critical lane changes and collisions, the incentive criterion takes into account the advantages and disadvantages of other drivers associated with a lane change via the “politeness factor.” The parameter allows one to vary the motivation for lane changing from purely egoistic to more cooperative driving behavior. This novel feature allows one first to prevent lane changes for a marginal advantage if they obstruct other drivers and second to let an aggressive driver induce the lane change of a slower driver ahead in order to no longer be obstructed. This phenomenon is common for asymmetric passing rules with a dedicated lane for passing. The model is applied to traffic simulations of cars and trucks with the intelligent driver model as the underlying car-following model. An open system with an on-ramp is studied, and the resulting lane-changing rate is investigated as a function of the spatial coordinate as well as a function of traffic density.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 681 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3