Travel Time Prediction

Author:

Wang Jianwei1,Zou Nan1,Chang Gang-Len1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742.

Abstract

As reported in the literature for the applications of intelligent transportation systems with traffic detectors, various missing data patterns are frequently observed in such systems and may dramatically degrade their performance. This study presents two imputation approaches for contending with the missing data issues in travel time prediction. The first model is based on the concept of multiple imputation technique to predict directly the travel times under various missing data patterns. The second model that serves as the supplemental component is to estimate the missing detector values using neighboring detector data and historical traffic patterns. Both models have been incorporated with reliability indicators so as to assess the quality of imputed data and its applicability for use in prediction. The numerical example based on 10 roadside detectors on I-70 in Maryland has demonstrated that both developed models outperformed existing methods and offer the potential for field implementation.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An adaptive framework for real-time freeway traffic estimation in the presence of CAVs;Transportation Research Part C: Emerging Technologies;2023-04

2. Data Imputation for Traffic State Estimation and Pre-diction Using Wi-Fi Sensors;Proceedings of the Sixth International Conference of Transportation Research Group of India;2022-09-29

3. Traffic Missing Data Imputation: A Selective Overview of Temporal Theories and Algorithms;Mathematics;2022-07-21

4. Missing Value Imputation for Traffic-Related Time Series Data Based on a Multi-View Learning Method;IEEE Transactions on Intelligent Transportation Systems;2019-08

5. VTeller;Proceedings of the 27th ACM International Conference on Information and Knowledge Management;2018-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3