Train Data Collection and Arrival Time Prediction System for Highway–Rail Grade Crossings

Author:

Chen Yifeng1,Rilett Laurence R.2

Affiliation:

1. AECOM, Suite 2000, 27777 Franklin Road, Southfield, MI 48034.

2. University of Nebraska–Lincoln, 262D Prem S. Paul Research Center at Whittier School, 2200 Vine Street, P.O. Box 830851, Lincoln, NE 68583-0815.

Abstract

A key component of the safe and efficient operation of traffic signals near highway–rail grade crossings (HRGCs) is an accurate estimate of a given train's arrival time at each crossing. An improvement in the accuracy and timing of the predicted train arrival would allow for improvements in traffic signal preemption algorithms, which would, in turn, lead to increased driver and pedestrian safety and reduced network delay. This paper introduces a system for train data collection and arrival time prediction at an HRGC that uses real-time data from a combined video–Doppler radar vehicle detection system. Train speed data were collected at a dual-track test bed system in Lincoln, Nebraska. Both kinematic equation–based and multiple linear regression models were developed and used to predict train arrival time at the HRGC. The best models, according to average absolute errors (AAE), were identified. On average, regression models were more accurate than kinematic models by approximately 13%. As detection time increased, AAEs of both the kinematic and regression models decreased. In addition, the confidence intervals about mean prediction errors were obtained with a bootstrap method. The average prediction errors of the regression models were approximately 50% smaller than the kinematic models, all else being equal.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3