Development and Finite Element Implementation of Stress-Dependent Elastoviscoplastic Constitutive Model with Damage for Asphalt

Author:

Collop Andrew C.1,(Tom) Scarpas A.2,Kasbergen Cor2,de Bondt Arian3

Affiliation:

1. Nottingham Centre for Pavement Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom

2. Structural Mechanics Section, SubFaculty of Civil Engineering, Delft University of Technology, Stevinweg 12628 CN, Delft, Netherlands

3. Ooms Avenhorn Holding bv, P.O. Box 11633 ZG, Avenhorn, Netherlands

Abstract

The development and finite element (FE) implementation of a stress-dependent elastoviscoplastic constitutive model with damage for asphalt is described. The model includes elastic, delayed elastic, and viscoplastic components. The strains (and strain rates) for each component are additive, whereas they share the same stress (i.e., a series model). This formulation was used so that a stress-based nonlinearity and sensitivity to confinement could be introduced into the viscoplastic component without affecting the behavior of the elastic and delayed elastic components. A simple continuum damage mechanics formulation is introduced into the viscoplastic component to account for the effects of cumulative damage on the viscoplastic response of the material. The model is implemented in an incremental formulation into the CAPA-3D FE program developed at Delft University of Technology in the Netherlands. A local strain compatibility condition is utilized such that the incremental stresses are determined explicitly from the incremental strains at each integration point. The model is demonstrated by investigating the response of a semirigid industrial pavement structure subjected to container loading. Results show that the permanent vertical strains in the non-stress-dependent case are significantly lower than the permanent vertical strains in the stress-dependent case. Results also show that in the stress-dependent case, there is a more localized area of high permanent vertical compressive strain directly under the load at approximately halfdepth in the asphalt compared with the non-stress-dependent case, in which the distribution is more even.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference15 articles.

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3