On-Road Versus Simulator Data in Driver Model Development Driver Performance Model Experience

Author:

Bittner Alvah C.1,Simsek Ozgur12,Levison William H.3,Campbell John L.1

Affiliation:

1. Battelle Human Factors Trans-portation Center, 4500 Sand Point Way NE, Seattle, WA 98105

2. University of Massachusetts, 50 Meadow Street, Apt. 45, Amherst, MA 01002

3. William H. Levison Associates, 19 Phinney Road, Lexington, MA 02421-7716

Abstract

Driver Performance Model (DPM) development has provided results reflecting on the debate between on-road and driving-simulator data in driving research. Developed for FHWA, DPM is a computational micro-process model of driver behavior that has been designed to simulate—in detail—the driver’s perceptual, cognitive, and control processes to generate steering, braking, and acceleration inputs to the vehicle. The requirement to develop driver data for prediction of absolute on-road performance—versus typical interest in ordinal findings to be later validated via on-road studies—led to the collection of comparable on-road and simulator data and their subsequent comparison. Comparisons of corresponding curve-entry speeds and speed profiles revealed a profound divergence between the on-road and simulator results ( t = 9.39, p < .005). Compared with simulator drivers, on-road drivers tended to have higher curve-entry speeds for the more difficult (sharper) curves and lower speeds for the less difficult curves. This trend, though reduced in magnitude, was apparent even after statistical adjustments for differences in respective tangent speeds ( t = 2.67, p < .01). These results are discussed in light of emerging on-road and simulator capabilities. The discussion and earlier results altogether supported two conclusions: ( a) debate concerning on-road versus simulator research studies is likely to continue with their rapidly emerging individual capabilities, and ( b) on-road research currently provides the best basis for driver model development where one-to-one real-world predictions are required (e.g., DPM).

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference16 articles.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3