Effect of Aging on Adhesion Properties of Asphalt Mixtures with the Use of Bitumen Bond Strength and Surface Energy Measurement Tests

Author:

Aguiar-Moya José P.1,Salazar-Delgado Jorge1,Baldi-Sevilla Alejandra2,Leiva-Villacorta Fabricio1,Loria-Salazar Luis1

Affiliation:

1. National Laboratory of Materials and Structural Models

2. Center for Electrochemistry and Chemical Energy, School of Chemistry, University of Costa Rica, P.O. Box 11501-2060, San José, Costa Rica.

Abstract

The interaction between asphalt binder and aggregate is fundamental to ensure adequate performance of asphalt mixtures, mainly in the presence of water. The work of adhesion generated between both materials directly affects the resistance of asphalt mixture to moisture damage, because it measures the ease with which water can displace asphalt binder from the aggregate surface. The objective of this study was to characterize the bond strength between asphalt and several aggregate sources. A PG 64-22 neat binder was modified with several additives to determine the effect on adhesion: polymers, nanomaterials, and adhesion promoters. To measure the strength of adhesion, the bitumen bond strength (BBS) test and contact angle measurements between asphalt binder and the aggregate surface by means of goniometry were used. The surface energy of the asphalt and the aggregate, with and without the presence of water, was estimated also. Testing was performed on all binders and on each binder–aggregate combination after ( a) rolling thin-film oven (RTFO) aging and ( b) RTFO and pressure aging vessel aging. The BBS results identified differences in bond strength as a result of moisture conditioning and aging. The differences depended on the aggregate source and binder type. Different failure modes were also observed (i.e., cohesive, adhesive). The results also indicated an increase in strength of adhesion associated with the aging process: the main resistance gain was observed after RTFO aging. Finally, changes in bond strength were compared with functional composition changes associated with the aging process and related to changes in performance.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference27 articles.

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3