Investigation into Shadow Removal from Traffic Images

Author:

Avery Ryan P.1,Zhang Guohui1,Wang Yinhai1,Nihan Nancy L.2

Affiliation:

1. Department of Civil and Environmental Engineering, Box 352700, University of Washington, Seattle, WA 98195-2700.

2. Transportation Northwest (TransNow), Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195-2700.

Abstract

Traffic surveillance cameras are becoming a viable replacement for inductive loop detectors. The effectiveness of these cameras, however, depends on video image processing algorithms that can alleviate common problems such as shadows, vehicle occlusion, reflection, and camera shake. Shadows have proved to be a major source of error in the detection and classification of vehicles. Three algorithms of increasing complexity are proposed to address the shadow problem. The algorithms each address the need to remove cast shadows from vehicles while preserving self-shadows, or those areas of a vehicle that are hidden from illumination. They are also geared toward real-time analysis, which requires that they can be implemented efficiently and cannot have complex training or learning requirements. The dual-pass Otsu method of shadow removal was the simplest in application but had the poorest performance. The proposed region growing technique, though showing considerable promise, failed when the pixel intensity varied widely in the shadow region. The last technique used edge imaging to recognize shadows as areas with few edges or with edges substantially similar to the background. This method clearly outperformed the other methods and was subsequently proved in a separate paper describing a prototype vehicle detection and classification system.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3