Emissions Characteristics for Heavy-Duty Diesel Trucks Under Different Loads Based on Vehicle-Specific Power

Author:

Zhang Shuanghong1,Yu Lei23,Song Guohua1

Affiliation:

1. Ministry of Education Key Laboratory for Urban Transportation Complex Systems Theory and Technology, School of Traffic and Transportation, Beijing Jiaotong University, 3 Shangyuan Cun, Haidian District, Beijing 100044, China

2. College of Science, Engineering, and Technology, Texas Southern University, 3100 Cleburne Avenue, Houston, TX 77004

3. Beijing Jiaotong University, Beijing, and Xuchang University, Xuchang, China

Abstract

Both operating modes and emissions factors for heavy-duty diesel (HDD) trucks were analyzed under different loads to understand the effect of vehicle loads on emissions. Second-by-second speed data for different loads for HDD trucks were collected first. Then a method for calculating the vehicle-specific power (VSP) values and an emissions model for heavy-duty vehicles by using the VSP value were developed to evaluate the effect of different vehicle loads. The VSP distributions and emissions characteristics for fully loaded and unloaded trucks were analyzed and compared. The results illustrate that the fully loaded vehicles spent more time driving in steady modes and the time percentage of VSP values in the bin of 0 kW/ton for fully loaded trucks was lower than the percentage for unloaded trucks. However, the time percentage at the positive VSP value was significantly higher than the percentage for the unloaded trucks. The emissions factors of fully loaded trucks were significantly higher than those of unloaded trucks. Emissions factors were affected the most at speed intervals of 20 to 40 km/h, with emissions factors for carbon dioxide, carbon monoxide (CO), oxides of nitrogen (NOx), hydrocarbon, and particulate matter (PM) at 20.4%, 23.5%, 29.0%, 11.7%, and 9.4% higher, respectively, than those levels for unloaded vehicles. With an increase of travel speed, the impact of the load on emissions weakened. Vehicle loads had the greatest effect on emissions of NOx, followed by emissions of CO. PM emissions were the least affected by vehicle loads. The impact of vehicle loads on emissions was affected by different acceleration behaviors under different loads.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference9 articles.

1. AhnK. Modeling Light Duty Vehicle Emissions Civil and Environmental Engineering. PhD dissertation. Virginia Polytechnic Institute and State University, Blacksburg, 2002.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3