Localization and Driving Behavior Classification with Smartphone Sensors in Direct Absence of Global Navigation Satellite Systems

Author:

Antoniou Constantinos1,Gikas Vassilis1,Papathanasopoulou Vasileia1,Danezis Chris2,Panagopoulos Athanasios D.3,Markou Ioulia1,Efthymiou Dimitrios1,Yannis George4,Perakis Harris1

Affiliation:

1. School of Rural and Surveying Engineering, National Technical University of Athens, 9 Iroon Polytechniou Street, Zografou Campus, 15780 Athens, Greece

2. Department of Civil Engineering and Geomatics, Cyprus University of Technology, 30 Archbishop Kyprianou Street, 3036 Lemesos, Cyprus

3. School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou Street, Zografou Campus, 15780 Athens, Greece

4. Department of Transportation Planning and Engineering, National Technical University of Athens, 5 Heroon Polytechniou Street, GR-15773 Athens, Greece.

Abstract

Global navigation satellite systems have tremendous impact and potential in the development of intelligent transportation systems and mobility services and are expected to deliver significant benefits, including increased capacity, improved safety, and decreased pollution. However, there are situations in which there might not be direct location information about vehicles, for example, in tunnels and in indoor facilities such as parking garages and commercial vehicle depots. Various technologies can be used for vehicle localization in these cases, and other sensors that are currently available in most modern smartphones, such as accelerometers and gyroscopes, can be used to obtain information directly about the driving patterns of individual drivers. The objective of this research is to present a framework for vehicle localization and modeling of driving behavior in indoor facilities or, more generally, facilities in which global navigation satellite system information is not available. Localization technologies and needs are surveyed and the adopted methodology is described. The case studies, which use data from multiple types of sensors (including accelerometers and gyroscopes from two smartphone platforms as well as two reference platforms), provide evidence that the opportunistic smart-phone sensors can be useful in identifying obstacles (e.g., speed humps) and maneuvers (e.g., U-turns and sharp turns). These data, when cross-referenced with a digital map of the facility, can be useful in positioning the vehicles in indoor environments. At a more macroscopic level, a methodology is presented and applied to determine the optimal number of clusters for the drivers’ behavior with a mix of suitable indexes.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3