Analytical Dynamic Traffic Assignment Model with Probabilistic Travel Times and Perceptions

Author:

Liu Henry X.1,Ban Xuegang2,Ran Bin2,Mirchandani Pitu3

Affiliation:

1. California PATH, ATMS Center for Research, Institute for Transportation Studies, University of California, Irvine, CA 92697

2. Department of Civil and Environmental Engineering, University of Wisconsin, 2256 Engineering Hall, Madison WI 53706

3. Department of Systems Engineering, University of Arizona, Tucson, AZ 85721-0020

Abstract

Dynamic traffic assignment (DTA) has been a topic of substantial research during the past decade. Although DTA is gradually maturing, many aspects still need improvement, especially regarding its formulation and solution capabilities under the transportation environment affected by advanced transportation management and information systems. It is necessary to develop a set of DTA models to acknowledge the fact that the traffic network itself is probabilistic and uncertain, and different classes of travelers respond differently under an uncertain environment given different levels of traffic information. The aim of this research is to advance the state of the art in DTA modeling in the sense that the proposed model captures the travelers’ decision making among discrete choices in a probabilistic and uncertain environment, in which both probabilistic travel times and random perception errors that are specific to individual travelers are considered. Travelers’ route choices are assumed to be made with the objective of minimizing perceived disutilities at each time. These perceived disutilities depend on the distribution of the variable route travel times, the distribution of individual perception errors, and the individual traveler’s risk-taking nature at each time instant. The integrated DTA model is formulated through a variational inequality approach. Subsequently, the solution algorithm for the formulation is discussed, and experimental results are given to verify the correctness of solutions obtained.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3