The role of progressive brittle fracture in the 1931 landslide at Dogface Rock, Katoomba

Author:

Tuckey Zack,

Abstract

The 1931 Dogface Rock landslide in Katoomba NSW was a complex, progressive cliff collapse with a failure volume in the order of 100,000 m3 that was triggered by the extraction of remnant coal pillars from the Katoomba Colliery, about 200 m below the top of the escarpment. Although underground coal mining is generally accepted as a cause of the rockslide, previous studies have not explicitly investigated the role of progressive brittle fracture in the collapse. This paper presents an integrated study which incorporates remotely piloted aircraft photogrammetry with a discrete element method numerical investigation of the landslide, and thereby explores the role of progressive brittle fracture, and re-examines the failure mechanism and runout motion of this multi-stage landslide. Remotely piloted aircraft photography is used to build a georeferenced 3D model of the site with Structure-from-Motion photogrammetry software. A digital geotechnical mapping workflow is demonstrated to investigate the morphology of the landslide scar, extract statistics on discontinuity orientation, persistence, and spacing, and undertake trace mapping of newer brittle fractures that interacted with pre-existing high persistence joints as the landslide rupture surface developed. A series of discrete element method numerical laboratory tests are used to calibrate bonded block contact properties that reproduce laboratory scale intact rock index parameters including UCS and tensile strength. Upscaled rock block contact parameters are then applied to a cliff-scale model that investigates the progressive development of rock mass damage induced by mining. Following extraction of the remnant pillars, rock mass damage develops mostly by extensile strains that produce tension cracks. Brittle fractures propagate upwards from the mine level and eventually initiate toppling of massive sandstone slabs defined by high persistence pre-existing subvertical joints. The investigation illustrates how the integration of photogrammetry with discrete element numerical methods can be used to characterise progressive brittle failure and runout of large rock slope failures.

Publisher

Australian Geomechanics Society

Subject

Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3