Effects of ultrasonic wave pretreatment on the fibrillation of cellulose fiber

Author:

XU YONGJIAN,YAN YING,YUE XIAOPENG,ZHU ZHENFENG,ZHANG DINGJUN,HOU GUANGQIANG

Abstract

Pinus massoniana Lamb. was used as the raw cellulose fiber material to investigate effects of ultrasonic wave pretreatment and PFI pretreatment on fiber bonding and absorbability. Influences of ultrasonic wave pretreatment on fiber crystalline structure and hydrogen bonds were also analyzed by wide-angle X-ray diffraction and Fourier transform infrared (FTIR) spectroscopy. The absorption and internal bond strength of fiber pretreated by ultrasonic waves increased by 23.49% and 4.07%, respectively, in comparison with those of virgin fiber, which would result in the improvement of weak bonding and absorbability. Instead, when fiber was pretreated by PFI, absorption decreased in comparison with virgin fiber and internal bond strength increased as much as 1.33 times than that of virgin fiber. The analysis of wide-angle X-ray diffraction curves and FTIR spectroscopy curves revealed that the crystallinity of fiber decreased by 20.59% in comparison with that of virgin fiber when treated by ultrasonic waves. Moreover, the effect of ultrasonic wave pretreatment on intramolecular hydrogen bonds was rather stronger than that of intermolecular hydrogen bonds. Therefore, the optimal swelling ability of fiber would be obtained.

Publisher

TAPPI

Subject

Mechanical Engineering,General Materials Science,Media Technology,General Chemical Engineering,General Chemistry

Reference31 articles.

1. Zhao, H.B., Kwak, J.H., and Zhang, Z.C., Carbohydr. Polym. 68(2): 235(2007).

2. Hon, D.N.S., Cellul. 1(1): 1(1994).

3. Garnier, D., Allison, E.A., Berceau, M.A., et al., U.S. pat. app. US 20050137547 A1 (June 23, 2005).

4. Xu, Y.J., China Pulp Pap. Ind. 27(4): 50(2006).

5. Xu, Y.J., China Pulp Pap. Ind. 24(6): 56(2003).

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3