Impact of dissolved lignin in oxygen delignification and chlorine dioxide stages

Author:

Wilke Caroline,Andersson Niclas,Van Fleet Rick,Mathur Akhlesh,Germgard Ulf

Abstract

While carryover of dissolved lignin between stages in the pulp mill fiber line is a well-known problem, it is still typically seen only as a minor disturbance factor or bias in the control of oxygen (O2) delignification and bleaching stages. The present study, however, reveals that it plays a larger role than anticipated, and that it should be properly analyzed in order to correctly control the process stages. This is especially important for the O2 and D0 stages as the lignin content is still high in these positions. The results of the study show that dissolved lignin carried over between stages may have a significant impact on the bleaching chemical consumption and, indirectly, on the pulp quality. Mill investigations have shown very large variations in the dissolved lignin content in the pulp before the oxygen delignification stage and before the D0 stage that have significantly influenced the bleaching chemical demand and, subsequently, the degree of delignification. In order to develop a better understanding of the mechanisms of the dissolved lignin’s reactions, laboratory O2 and D0 experiments with controlled levels of dissolved lignin were conducted. It was anticipated that a better feedforward control could be achieved using an online dissolved lignin measurement, and results from mill trials are presented. Chlorine dioxide laboratory experiments using different levels of carryover (i.e., different dissolved lignin contents) were conducted. It was concluded that the filtrate kappa number provides a relevant measure of the bleach demand due to the dissolved lignin and that, subsequently, the combined fiber and filtrate kappa number provides an appropriate measure for optimum feedforward control of the stages. Mill results support these findings, which show that the chemical consumption is reduced significantly using the total kappa number. The post-D or post-DE kappa number feedback control can most probably be eliminated by using this technology.

Publisher

TAPPI

Subject

Mechanical Engineering,General Materials Science,Media Technology,General Chemical Engineering,General Chemistry

Reference6 articles.

1. Andersson, N., et al., TAPPI J. 13(10): 39(2014).

2. Miller, M., Kwon, H., Liukkonen, A., et al., TAPPI Pulping Conf., 1995, p. 393.

3. Miller, M., Shackford, L.D., Jiang, H., et al., Tappi J. 74(2): 117(1991).

4. Barroca, M.J.M.C., Simões, R.M.S., and Castro, J.A.A.M., Appita J. 55(1): 60(2002).

5. Lehtimaa, T., Tarvo, V., Kuitunen, S., et al., J. Wood Chem. Technol. 30(1): 1(2010).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3