Fiber interaction with a forming fabric

Author:

LI JINGMEI,GREEN SHELDON I.

Abstract

During sheet forming, the structure of the forming fabric leaves wire marks on the pulp mat. Paper nonuniformity caused by the wire mark can lead to ink nonuniformity in printing. We investigated wire mark numerically through simulations of the interaction of individual fibers with a forming fabric. In the simulations, the flow field through the forming fabric was taken to be that of single-phase water flow without disturbance of fibers. A particle level simulation method was applied to simulate the motion of fibers in the flow through a single layer sine-wave fabric. A hundred fibers of random initial distribution were placed into the flow above the fabric. Those fibers were advected onto the fabric, forming a fiber mat. The surface roughness of the resulting fiber mat was then calculated. The results show that during the initial formation, topographic wire mark is caused partially by fiber bending and partially by the geometry of the fabric. For the specific fibers and sinusoidal forming fabric considered, more than 50% of topographic wire mark is the result of geometry, with the remainder attributed to fiber bending. Fabrics with different geometries (e.g., different filament pitches or a nonsinusoidal geometry) will have different relative influences from geometry and fiber bending.

Publisher

TAPPI

Subject

Mechanical Engineering,General Materials Science,Media Technology,General Chemical Engineering,General Chemistry

Reference25 articles.

1. Helle, T., J. Pulp Pap. Sci. 14(4): 91(1988).

2. Danby, R., Pulp Pap. Can. 87(8): 69(1996).

3. Danby, R., Pulp Pap. Can. 95(1): 48(1994).

4. Helle, T., EUCEPA Conf. Proc., 22nd, ATICELCA, Milan, 1986, p. 1.

5. Samuelsen, E.J., Gregersen, Ø., Houen, P., et al., J. Pulp Pap. Sci. 27(2): 50(1999).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3