Production and characterization of furanic bio-oil from Kawayan kiling (Bambusa vulgaris Schrad ex. Wendl) using molten citric acid in an open system

Author:

MALLARI JOHN GODWIN A.,MANALO RONNIEL D.

Abstract

The burning of fossil fuels poses many threats to the environment. These predicaments have led to a continuous search for alternative sources and production of energy, and biomass is considered the most abundant renewable energy source. In this study, the potential to produce furanic bio-oil from the cellulose of Bambusa vulgaris was explored. The proximate chemical analysis of bamboo was determined using TAPPI Standards. Cellulose was isolated through dewaxing, delignification, and alkaline treatments. The furanic bio-oil was produced by mixing cellulose and citric acid in a solvent-free environment. The effects of the digestion time (120 min, 180 min, and 240 min) on the yield and characteristics were determined. The chemical compositions were determined using Fourier transform infrared (FTIR) spectroscopy and gas chromatography-mass spectrometry (GCMS). B. vulgaris has the following chemical composition: alpha-cellulose (57.42 ± 0.40), holocellulose (78.84 ± 0.52), lig-nin (28.85 ± 0.17), hot water extractives (3.99 ± 0.08), organic extractives (0.77 ± 0.04), ash (4.67 ± 0.02), and moisture (12.98 ± 0.22). The bio-oil yield was affected by the digestion time. The highest yield was obtained at 180 min, followed by 120 min, and 240 min with 88.59%, 59.28%, and 49.96%, respectively. The peaks in the FTIR spectra corresponded to the compounds determined by the GCMS analysis. The dominant chemicals were furans (29.19%), ketones (26.31%), and carboxylic acids (19.26%). The bio-oil obtained at 180-min digestion time has the following properties: sulfur content (0.032 wt%), kinematic viscosity (1.03 mm2/s), specific gravity (0.925), copper corrosion test (No. 1a), pH (2.753), and water content (not detected). Overall, the obtained values from the properties and chemical characterization can be the basis for investigating its performance for biofuel production and utilization. This study is aligned with the Bamboo Industry’s Strategic Science and Technology Plan for the Philippines to develop other value-added products from bamboo and to achieve Sustainable Development Goal 7 (SDG 7) as determined by the United Nations.

Publisher

TAPPI

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3