In Vivo Pulp Temperature Changes During Class V Cavity Preparation and Resin Composite Restoration in Premolars

Author:

Zarpellon DC,Runnacles P,Maucoski C,Gross DJ,Coelho U,Rueggeberg FA,Arrais CAG

Abstract

SUMMARY Objective This in vivo study evaluated the influence of the sequence of all restorative steps during Class V preparation and restoration in human premolars on pulp temperature (PT). Methods and Materials Intact premolars with orthodontic extraction indication of 13 volunteers received infiltrative anesthesia and isolation with rubber dam. An occlusal preparation was made with a high-speed diamond bur under air-water spray until the pulp was minimally exposed, then a thermocouple probe was inserted within the pulp. A deep, 2.0-mm depth Class V preparation was made using a high-speed diamond bur under air-water spray. Three restorative techniques were performed (n=7): Filtek Z250 placed in two increments (10-second exposure, shade:A2, 3M ESPE, St. Paul, MN, USA), Filtek Z350 XT (40-second exposure, shade:A3D, 3M ESPE) and Tetric N Ceram Bulk Fill (10-second exposure, shade:IVA, Ivoclar Vivadent, Schaan, Liechtenstein), both placed in a single layer. Bonding layer and resin composite were exposed to light from the same Polywave LCU (Bluephase 20i, Ivoclar Vivadent). The peak PT and the difference between peak PT and baseline (ΔT) values were subjected to two-way, repeated measures analysis of variance (ANOVA), followed by the Bonferroni post-hoc test (α=0.05). Results Cavity preparation and etch & rinse procedures decreased the PT values (p<0.001). The 40-second exposure of Filtek Z350 caused the highest peak PT values (38.7±0.8°C) and the highest ΔT values (3.4±0.8°C), while Tetric N Ceram Bulk Fill showed the lowest values (−1.6±1.3°C; p=0.009). Conclusion None of the evaluated procedures resulted in a PT rise near to values that could offer any risk of thermal damage to the pulp.

Publisher

Operative Dentistry

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3