The Potential of a Bioactive, Pre-reacted, Glass-Ionomer Filler Resin Composite to Inhibit the Demineralization of Enamel in Vitro

Author:

Leão IF,Araújo N,Scotti CK,Mondelli RFL,de Amoêdo Campos Velo MM,Bombonatti JFS

Abstract

Clinical Relevance A prereacted, glass-ionomer filler fluoride-containing resin composite had lower remineralization potential than glass-ionomer cements but was able to inhibit enamel demineralization; thus, it may be an option for restoring dental surfaces for patients at high risk of caries. SUMMARY Evidence is lacking on the use of surface prereacted glass-ionomer filler resin composites to inhibit demineralization and that simulate real clinical conditions. The present laboratory study evaluated the potential of such composites to prevent demineralization and quantified fluoride (F) and other ions released from restorative materials after a dynamic pH-cycling regimen applied to the tooth material interface in vitro. The pH-cycling regimen was assessed by measuring surface hardness (SH) along with energy dispersive X-ray spectroscopy (EDX). Methods and Materials: Ninety blocks of bovine enamel were subjected to composition analysis with EDX, and were further categorized based on SH. The blocks were randomly divided into 6 treatment groups (n=15 each): F IX (Fuji IX Extra; GC Corporation); IZ (Ion Z, FGM); F II (Fuji II LC, GC Corporation); B II (Beautifil II, Shofu); F250 (Filtek Z250 XT, 3M ESPE); and NT (control, no treatment). The blocks were subjected to a dynamic pH-cycling regimen at 37°C for 7 days concurrently with daily alternations of immersion in demineralizing/remineralizing solutions. EDX was conducted and a final SH was determined at standard distances from the restorative materials (150, 300, and 400 μm). Results: The EDX findings revealed a significant increase in F concentration and a decrease in Ca2+ in the enamel blocks of group B II after the pH-cycling regimen (p<0.05). SH values for groups F IX, IZ, and F II were greater than those for groups B II, F250, and NT at all distances from the materials. Conclusions: The results suggest that each of 3 restorative materials, F IX, IZ, and F II, partially inhibited enamel demineralization under a dynamic pH-cycling regimen.

Publisher

Operative Dentistry

Subject

General Dentistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3