Effect of Different Surface Treatments and Adhesives on Repair Bond Strength of Resin Composites After One and 12 Months of Storage Using an Improved Microtensile Test Method

Author:

Eliasson ST1,Tibballs J2,Dahl JE3

Affiliation:

1. Sigfus T Eliasson, DDS, MSD, professor, Faculty of Odontology, University of Iceland, Reykjavik, Iceland

2. John Tibballs, PhD, senior scientist, Nordic Institute of Dental Materials, Oslo, Norway

3. Jon E Dahl, DDS, Dr Odont DSc, director, Nordic Institute of Dental Materials, Oslo, Norway

Abstract

SUMMARY Objectives To evaluate the effect of surface treatments and bonding systems on the repair bond strength between composite materials after one and 12 months of storage, using an improved microtensile test method. Methods A total of 72 composite cylinders (Tetric Evo Ceram, Ivoclar) were fabricated, stored in distilled water for two weeks followed by thermal cycling (5000 times between 5°C and 55°C), and served as substrate. The cylinders were mechanically roughened using 320-grit silicon carbide sandpaper, etched with 37% phosphoric acid gel, rinsed with water, and divided equally into three experimental groups: group 1, unchanged surface; group 2, sandblasting of the surface (CoJet tribochemical silica sand, 3M ESPE; Microetcher II, Danville Engineering Inc); and group 3, surface silane coating (Bis-Silane, BISCO Inc). Eight control cylinders were prepared and underwent similar aging as the substrate. Each experimental group was divided into subgroups that received the following bonding systems: one-step self-etching adhesive (AdheSE One, Ivoclar Vivadent), two-step self-etching adhesive (Clearfil SE, Kuraray America), and three-step etch-and-rinse adhesive (Adper Scotchbond Multi-Purpose, 3M ESPE). Fresh composite (Tetric Evo Ceram, Ivoclar) was placed and cured on top of the prepared substrate cylinders. The specimens were placed in distilled water for a week and thermocycled the same way as before. Eight composite control cylinders were also stored and thermocycled for the same period of time. Half of the cylinders in each test group were tested at one month and the second half at 12 months. The cylinders were serially sectioned in an automatic cutting machine, producing 10 to 20 1.1 × 1.1-mm test specimen beam from each cylinder. Specimens were prepared for microtensile testing and the tensile strength calculated based on the force at fracture and specimen dimension. The fracture surfaces were examined under a stereomicroscope and the type of fracture noted. Results The mean tensile strength of composite control was 54.5 ± 6.0 MPa at one month and 49.6 ± 5.1 MPa at 12 months. The mean tensile strength for the repaired groups ranged from 26.4 ± 6.8 MPa to 49.9 ± 10.4 MPa at one month and 21.2 ± 9.9 to 41.3 ± 7.5 at 12 months. There was a statistical difference between all groups (p<0.05) at one month. This difference was less pronounced at 12 months. The highest repair strength was obtained in the group having a silane-coated surface and Clearfil, the two-step self-etching adhesive. Clearfil also had the highest repair strength within each surface treatment group. There was a tendency for lower tensile strength at 12 months compared with one month. Most fractures were of the adhesive type; the highest number of cohesive fractures, 16% at one month and 12% at 12 months, were in groups with the highest tensile strength. Conclusion The best repair bond strength was achieved by using freshly mixed silane solution on the substrate in addition to an adhesive, rendering a thin bonding layer.

Publisher

Operative Dentistry

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3