Author:
Jafarpour S,El-Badrawy W,Jazi HS,McComb D
Abstract
SUMMARY
Objective
The objective of this study was to investigate, by simulation, the effect of conventional composite resin insertion techniques on cuspal deflection using bonded typodont artificial teeth. The deflection produced by a new low-shrinkage composite was also determined.
Materials and Methods
Sixty standardized MOD preparations on ivorine maxillary premolars were prepared: group A at 4 mm depth and group B at 6 mm depth. Each group was further subdivided according to composite insertion technique (n=6), as follows: 1) bulk insertion, 2) horizontal increments, 3) tangential increments, and 4) a modified tangential technique. Preparations were microetched, acid-cleaned, and bonded with adhesive resin to provide micromechanical attachment before restoration with a conventional composite (Spectrum TPH3, Dentsply). Two additional subgroups at 4 mm and 6 mm depth (n=6) were restored in bulk using low-shrinkage composite (Filtek LS, 3M/ESPE). All groups received the same total photo-polymerization time. Cuspal deflection was measured during the restorative procedure using two Linear Variable Differential Transformers attached to a data acquisition system.
Results
The average cuspal deflections for group A were 1) 40.17 ± 1.18 μm, 2) 25.80 ± 4.98 μm, 3) 28.27 ± 5.12 μm, and 4) 27.33 ± 2.42 μm. The deflections in group B were 1) 38.82 ± 3.64 μm, 2) 50.39 ± 9.17 μm, 3) 55.62 ± 8.16 μm, and 4) 49.61 ± 8.01 μm. Cuspal flexure for the low-shrinkage composite was 11.14 ± 1.67 μm (group A: 4 mm depth) and 16.53 ± 2.79 μm (group B: 6 mm depth).
Conclusions
All insertion techniques using conventional composite caused cuspal deformation. In general, deeper preparations showed increased cuspal deflection—except in the case of bulk insertion, which was likely affected by decreased depth of cure. Cuspal movement using low-shrinkage composite was significantly reduced.
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献