Shear Bond Strength of Four Different Repair Materials Applied to Bis-acryl Resin Provisional Materials Measured 10 Minutes, One Hour, and Two Days After Bonding

Author:

Shim JS1,Park YJ2,Manaloto ACF3,Shin SW4,Lee JY5,Choi YJ6,Ryu JJ7

Affiliation:

1. Ji Suk Shim, Master, Korea University Ansan Hospital, Prosthodontics, Gyeonggi-do, Republic of Korea

2. Yo Jung Park, Seoul, Republic of Korea

3. Adrian Carlos F Manaloto, Seoul, Republic of Korea

4. Sang Wan Shin, Seoul, Republic of Korea

5. Jeong Yol Lee, Seoul, Republic of Korea

6. Yeon Jo Choi, Korea University Anam Hospital, Seoul, Republic of Korea

7. Jae Jun Ryu, PhD, Korea University Anam Hospital, Prosthodontics, Seoul, Republic of Korea

Abstract

SUMMARY This study investigated the shear bond strength of repaired provisional restoration materials 1) to compare the bond strengths between bis-acryl resin and four different materials and 2) to investigate the effect of the amount of time elapsed after bonding on the bond strength. The self-cured bis-acryl resin (Luxatemp) was used as the base material, and four different types of resins (Luxatemp, Protemp, Z350 flowable, and Z350) were used as the repair materials. Specimens were divided into three groups depending on the point of time of shear bond strength measurement: 10 minutes, one hour, and 48 hours. Shear bond strengths were measured with a universal testing machine, and the fracture surface was examined with a video measuring system. Two-way analysis of variance revealed that the repair materials (p<0.001) and the amount of time elapsed after bonding (p<0.001) significantly affected the repair strength. All of the repaired materials showed increasing bond strength with longer storage time. The highest bond strength and cohesive failure were observed for bonding between Luxatemp base and Luxatemp at 48 hours after bonding.

Publisher

Operative Dentistry

Subject

General Dentistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3