Author:
Archegas LRP,de Menezes Caldas DB,Rached RN,Soares P,Souza EM
Abstract
SUMMARY
The objective of this study was to determine the degree of conversion (DC), hardness (H), and modulus of elasticity (E) of a dual-cured resin cement, a light-cured resin cement, and a flowable resin cured through opaque or translucent ceramic with different exposure times. RelyX ARC (dual), RelyX Veneer (light-cured), and Filtek Z350 Flow resin specimens 0.5 mm thick were cured for 40, 80, and 120 seconds through 1-mm thick translucent or opaque feldspathic ceramic disks (n=10). The specimens were stored at 37°C for 24 hours. Half of each specimen was used to test the DC and the other half to test H and E. The DC was determined in a Fourier transform infrared spectrometer in absorbance mode at peaks of 1638 cm−1 and 1610 cm−1. H and E were determined using nanoindentation with one loading cycle and a maximum load of 400 mN. The data were analyzed with three-way analysis of variance (ANOVA), the Games-Howell test, and the Pearson correlation test (α=0.05). Statistically significant differences were found for all three factors (material, opacity, and exposure time), as well as interaction between them. The opaque ceramic resulted in lower DC, H, and E than the translucent ceramic for an exposure time of 40 seconds. An exposure time of 120 seconds resulted in a similar DC for all materials, irrespective of the opacity of the ceramic. Materials cured for 120 seconds had higher H and E than those cured for 40 seconds. The exposure time and opacity of the ceramic exerted an influence on the DC, H, and E of the materials evaluated.