Fluoride Release from Glass Ionomer Cement and Resin-modified Glass Ionomer Cement Materials under Conditions Mimicking the Caries Process

Author:

Brenes-Alvarado A,Cury JA

Abstract

SUMMARY The anticaries potential of restorative ionomeric materials should be evaluated under a pH-cycling regime that simulates the caries process of demineralization and remineralization. Ten glass ionomer cement (GIC) materials and five resin-modified glass ionomer cement (RMGIC) materials were evaluated. A resin composite was used as a negative control. Six discs of each material were immersed for 6 and 18 hours each day in demineralizing (De-) and remineralizing (Re-) solutions, respectively. The solutions were changed daily over 12 days, during which the fluoride concentration was determined using an ion-specific electrode. The results were expressed as (1) the daily fluoride concentration in the Deand Re- solutions (μg F/ml), (2) the amount of fluoride released daily in the De- + Re- solution per area of specimens (μg F/cm2/day), and (3) the cumulative release over the 12-day period (μg F/cm2). During the first days, all materials showed a surge in fluoride release, followed by a gradual decline; however, three distinct patterns were observed, specifically: (1) greater fluoride release in the De- solution compared to the Resolution during the study period; (2) an initial higher release in De- solution; and (3) a similar release in both solutions over the whole period. The materials differed statistically (p<0.05) with respect to daily and cumulative fluoride release. One GIC (Maxxion R) and one RMGIC (Resiglass R) had the highest and lowest ability to release fluoride, respectively. In conclusion, the GICs and RMGICs evaluated exhibited distinct qualitative and quantitative patterns of fluoride release under conditions simulating the caries process, which might reflect their anticaries potential.

Publisher

Operative Dentistry

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3