Influence of Emission Spectrum and Irradiance on Light Curing of Resin-Based Composites

Author:

Shimokawa CAK1,Sullivan B2,Turbino ML3,Soares CJ4,Price RB5

Affiliation:

1. Carlos Alberto Kenji Shimokawa, DDS, MSc, PhD student, Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo, Brazil

2. Braden Sullivan, BSc, research assistant, Department of Dental Clinical Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS, Canada

3. Míriam Lacalle Turbino, DDS, MSc, PhD, associate professor, Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo, Brazil

4. Carlos José Soares, DDS, MSc, PhD, professor, Department of Operative Dentistry and Dental Materials, School of Dentistry, Federal University of Uberlandia, Uberlandia, Brazil

5. Richard Bengt Price, BDS, DDS, MS, FRCD(C), FDS RCS (Edin), PhD, professor, Department of Dental Clinical Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS, Canada

Abstract

SUMMARY Purpose: This study examined the influence of different emission spectra (single-peak and broad-spectrum) light-curing units (LCUs) delivering the same radiant exposures at irradiance values of 1200 or 3600 mW/cm2 on the polymerization and light transmission of four resin-based composites (RBCs). Methods and Materials: Two prototype LCUs that used the same light tip, but were either a single-peak blue or a broad-spectrum LED, were used to deliver the same radiant exposures to the top surfaces of the RBCs using either standard (1200 mW/cm2) or high irradiance (3600 mW/cm2) settings. The emission spectrum and radiant power from the LCUs were measured with a laboratory-grade integrating sphere coupled to a spectrometer, and the light beam was assessed with a beam profiler camera. Four RBCs (Filtek Supreme Ultra A2, Tetric EvoCeram A2, Tetric EvoCeram T, and TPH Spectra High Viscosity A2) were photoactivated using four different light conditions: single-peak blue/standard irradiance, single-peak blue/high irradiance, broad-spectrum/standard irradiance, and broad-spectrum/high irradiance. The degree of conversion (N=5) and microhardness at the top and bottom of 2.3-mm-diameter by 2.5-mm-thick specimens (N=5) were analyzed with analysis of variance and Tukey tests. The real-time light transmission through the RBCs was also measured. Results: For all light conditions, the 2.3-mm-diameter specimens received a homogeneous irradiance and spectral distribution. Although similar radiant exposures were delivered to the top surfaces of the RBCs, the amount of light energy emitted from the bottom surfaces was different among the four RBCs, and was also greater for the single-peak lights. Very little violet light (wavelengths below 420 nm) reached the bottom of the 2.5-mm-thick specimens. The degree of conversion and microhardness results varied according to the RBC (p<0.05). The RBCs that included alternative photoinitiators had greater microhardness values at the top when cured with broad-spectrum lights, while at the bottom, where little violet light was observed, the results were equal or higher when they were photoactivated with single-peak blue lights. With the exception of the microhardness at the top of TPH, equivalent or higher microhardness and degree-of-conversion values were achieved at the bottom surface when the standard (1200 mW/cm2) irradiance levels were used compared to when high irradiance levels were used. Conclusions: Considering the different behaviors of the tested RBCs, the emission spectrum and irradiance level influenced the polymerization of some RBCs. The RBCs that included alternative photoinitiators produced greater values at the top when cured with broad-spectrum lights, while at the bottom, results were equal or higher for the RBCs photoactivated with single-peak blue lights.

Publisher

Operative Dentistry

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3