Polymerization Shrinkage and Depth of Cure of Bulk-Fill Resin Composites and Highly Filled Flowable Resin

Author:

Jang J-H,Park S-H,Hwang I-N

Abstract

SUMMARY The aim of this study was to evaluate the polymerization behavior and depth of cure (DOC) of recently introduced resin composites for posterior use: highly filled flowable composite and composites for bulk fill. A highly filled flowable (G-aenial Universal Flo [GUF]), two bulk-fill flowables (Surefil SDR Flow [SDR] and Venus Bulk fill [VBF]), and a bulk-fill nonflowable composite (Tetric N-Ceram Bulk fill [TBF]) were compared with two conventional composites (Tetric Flow [TF], Filtek Supreme Ultra [FS]). Linear polymerization shrinkage and polymerization shrinkage stress were each measured with custom-made devices. To evaluate DOC, the composite specimen was prepared using a mold with a hole of 4 mm depth and 4 mm internal diameter. The hole was bulk filled with each of the six composites and light cured for 20 seconds, followed by 24 hours of water storage. The surface hardness was measured on the top and the bottom using a Vickers microhardness (HV) indenter. The linear polymerization shrinkage of the composite specimens after photo-initiation decreased in the following order: TF and GUF > VBF > SDR > FS and TBF (p<0.05). The polymerization shrinkage stress of the six composite groups decreased in the following order: GUF > TF and VBF > SDR > FS and TBF (p<0.05). The mean bottom surface HV of SDR and VBF exceeded 80% of the top surface HV (HV-80%). However, the bottom of GUF and TBF failed to reach HV-80%. A highly filled flowable (GUF) revealed limitations in polymerization shrinkage and DOC. Bulk-fill flowables (SDR and VBF) were properly cured in 4-mm bulk, but they shrank more than the conventional nonflowable composite. A bulk-fill nonflowable (TBF) showed comparable shrinkage to the conventional nonflowable composite, but it was not sufficiently cured in the 4-mm bulk.

Publisher

Operative Dentistry

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3