Prediction of technological properties of wheat flour by combination of UV-VIS-NIR spectroscopy and multivariate analysis methods

Author:

Platova R. A.1ORCID,Zhirkova E. V.1ORCID,Metlenkin D. A.1ORCID,Lysenkova A. A.1ORCID,Platov Yu. T.1ORCID,Rassulov V. A.2ORCID

Affiliation:

1. Plekhanov Russian University of Economic

2. All-Russian Research Institute of Mineral Resources named after N. M. Fedorovsky

Abstract

Over the last decades, optical spectroscopy methods that do not require complex sample preparation have been widely used to identify and control the composition of food products. In the present study, the possibility of using UV-VIS-NIR spectroscopy combined with multivariate analysis for grading wheat flour into groups differing in technological properties was analyzed. UV-VIS-NIR spectra contain information on the combination and intensity of absorption bands assigned to functional groups of the composition components and determining the technological properties of wheat flour. The database of UV-VIS-NIR spectra of wheat flour samples differing by technological properties was formed into three groups: the first group — wheat flour samples with good baking properties, the second group — with reduced baking properties, the third group — with low baking properties. The visible range of UV-VIS-NIR diffuse reflectance spectrum was used to calculate the color coordinates in the CIE colorimetric system L*a*b*. The greatest difference among the groups in the color coordinates of the samples was found for the coordinate b*, which is associated with the different content of coloring pigments. The spectra database was used to build a classification model for grading wheat flour into quality groups using a combination of principal component analysis and linear discriminant analysis (PCA-LDA) methods. The achieved results indicate that the classification model built on the training sample is able to distinguish wheat flour spectra by quality groups with an accuracy of 96.49%. The effective- ness of the model is verified using a test set of spectra of wheat flour samples. The present study confirms that the combina- tion of UV-VIS-NIR spectroscopy in conjunction with the PCA-LDA method has significant potential for determining a quality group of wheat flour based on technological properties.

Publisher

The Gorbatov's All-Russian Meat Research Institute

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3