Use of turbidimetry for determination of heat treatment intensity applied at pasteurization of milk

Author:

Myagkonosov D. S.1ORCID,Topnikova E. V.1ORCID,Abramov D. V.1ORCID,Kashnikova O. G.1ORCID

Affiliation:

1. All-Russian Scientific Research Institute of Butter- and Cheesemaking

Abstract

Express methods for estimating the intensity of heat treatment of milk are necessary in industry and in research work. For this reason, there are many ways to measure this parameter, which are based on different physical principles, including turbidimetric methods. The Harland & Ashworth turbidimetric method has been developed for a long time, however, due to its high reliability and ease of implementation, it is still used in practice. However, this method has a drawback: it takes a long time to perform the analysis. In this regard, the aim of the work is to develop an express method for evaluating the thermal class of milk based on the principle of measuring the concentration of soluble whey proteins. The result is achieved through the use of a turbidimetric measurement method with optimized sample preparation parameters and parameters for measuring the optical density of a suspension of protein aggregates. The method is implemented as follows. The milk sample is mixed with 0.1 N acetate buffer (pH 4.6) in a ratio that allows to obtain a concentration of soluble milk whey proteins from 0.05% to 0.1%. Recommended dilution coefficients: 1:3 for samples of ultra-pasteurized milk and pasteurized milk with high heat treatment intensity; 1:7 for samples of pasteurized milk with low heat treatment intensity and 1:14 for raw milk samples. The solution is filtered on a membrane filter with a pore size of 0.45 microns. The resulting filtrate is mixed with 24% trichloroacetic acid (TCA) in a 1:1 ratio to coagulate soluble whey proteins and form protein aggregates. After holding for 5–10 minutes, the optical density of the suspension of protein aggregates is measured at a wavelength of 650 nm. The content of water-soluble whey proteins in the sample can be calculated according to the calibration curve. The developed method allows to obtain the measurement result in less time than the Harland & Ashworth turbidimetric method.

Publisher

The Gorbatov's All-Russian Meat Research Institute

Reference34 articles.

1. Mandal, R., Bag, S. K., Singh, A. P. (2019). Thermal Processing of Milk. Chapter in a book: Recent Technologies in Dairy Science. Today and Tomorrow’s Printers and Publishers, New Delhi, India, 2019.

2. Akkerman, M. (2014). The effect of heating processes on milk whey protein denaturation and rennet coagulation properties. Master Thesis. Department of Food Science, Aarhus University. Retrieved from http://www.library.au.dk/fil-eadmin/www.bibliotek.au.dk/fagsider/jordbrug/Specialer/Marije_-master_the-sis.pdf Accessed December 11, 2023.

3. Mahomud, S., Katsuno, N., Nishizu, T. (2017). Role of whey protein-casein complexes on yoghurt texture. Reviews in Agricultural Science, 5, 1–12. https://doi.org/10.7831/ras.5.1

4. Guinee, T. P. (2021). Effect of high-temperature treatment of milk and whey protein denaturation on the properties of rennet–curd cheese: A review. International Dairy Journal, 121, Article 105095. https://doi.org/10.1016/j.idairyj.2021.105095

5. Barraquio, V. L. (2014). Which milk is fresh? International Journal of Dairy Processing and Research, 1(2), 1–6. https://doi.org/10.19070/2379-1578-140002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3