Use of machine learning technology to model the distribution of lithotypes in the Permo-Carboniferous oil deposit of the Usinskoye field

Author:

Potekhin DenisORCID,Galkin SergeiORCID

Abstract

Permo-Carboniferous oil deposit of the Usinskoye field is characterized by an extremely complex type of the void space with intense cross-sectional distribution of cavernous and fractured rock. In this study, for this production site, the process of 3D geological modeling has been implemented. At the first stage, it provided for automated identification of reservoir volumes by comparing the data of core and well logging surveys; at the second stage, identification of rock lithotypes according to Dunham classification is performed on the basis of comparison of thin sections examination and well logging data. A large array of factual information enables the use of machine learning technology on the basis of Levenberg – Marquardt neural network apparatus toward achievement of our research goals. The prediction algorithms of reservoir and rock lithotype identification using well logging methods obtained on the basis of the training samples are applied to the wells without core sampling. The implemented approach enabled complementing the 3D geological model with information about rock permeability and porosity, taking into account the structural features of the identified lithotypes. For the Permo-Carboniferous oil deposit of the Usinskoye field, the volumetric zoning of the distribution of different rock lithotypes has been established. Taking into account the lithotypes identified based on machine learning algorithms, density and openness of fractures were determined, and fracture permeability in the deposit volume was calculated. In general, during the implementation, the machine learning errors remained within 3-5 %, which suggests reliability of the obtained predictive solutions. The results of the research are incorporated in the existing 3D digital geological and process model of the deposit under study.

Publisher

Saint-Petersburg Mining University

Subject

Economic Geology,Geology,Geotechnical Engineering and Engineering Geology,Energy (miscellaneous)

Reference39 articles.

1. Прищепа О.М., Боровиков И.С., Грохотов Е.И. Нефтегазоносность малоизученной части северо-запада Тимано-Печорской нефтегазоносной провинции по результатам бассейнового моделирования // Записки Горного института. 2021. Т. 247. С. 66-81. DOI: 10.31897/PMI.2021.1.8

2. Тимонина Н.Н. Пути инновационного развития нефтегазового комплекса Республики Коми // Вестник Института геологии Коми научного центра Уральского отделения РАН. 2014. Т. 237. № 9. С. 25-28.

3. Каюков В.В., Зайцев Е.В. Инвестиционная привлекательность нефтегазового комплекса Республики Коми // Ресурсы Европейского Севера. Технологии и экономика освоения. 2015. № 1. С. 91-96.

4. Тимонина Н.Н., Никонов Н.И. Стратегия развития нефтегазового комплекса Республики Коми // Георесурсы. 2013. Т. 52. № 2. С. 39-44.

5. James N.P., Bourque P.A. Reefs and mound // Facies models – response to sea-level change. Hamilton: Geological Association of Canada, 1992. P. 323-347.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3