Abstract
The results of laboratory studies to determine the effect of effective stress on the permeability of sandstone are presented. During the test, the samples were subjected to a stepwise increase or decrease of the effective stress (at a constant pore pressure) in a specified step. The values of rock permeability at different values of effective stress were determined, and the influence of the grain size of the reservoir rock matrix on the character of the change in the sandstone permeability coefficient was also established. During the test, a decrease in permeability was observed with an increase in effective stress. It was found that as a result of gradual loading/unloading of the sandstone sample, the original permeability values were not restored, which indicates the beginning of the formation of residual strains in the rock. This effect should be taken into account when modeling field development because in the process of reserves extraction the effective stress acting on the reservoir rock skeleton changes, which results in a significant chang in rock permeability. The results of laboratory studies showed that the deviation of permeability in medium-grained sandstones relative to the initial value was greater than in medium- and fine-grained sandstones. The pressure sensitivity coefficient and constant of material, which are used in empirical relationships between permeability and effective stress, were numerically estimated. At the same time, the constant of material showed no such convergence, which indicates that the values of this parameter are individual for each rock.
Publisher
Saint-Petersburg Mining University
Subject
Economic Geology,Geology,Geotechnical Engineering and Engineering Geology,Energy (miscellaneous)
Reference36 articles.
1. Fan M., McClure J., Han Y. et al. Using an experiment/simulation-integrated approach to investigate fracture-conductivity evolution and non-Darcy flow in a proppant-supported hydraulic fracture // SPE Journal. 2019. Vol. 24. Iss. 4. P. 1912-1928. DOI: 10.2118/195588-PA
2. Грачев С.И., Коротенко В.А., Кушакова Н.П. Исследование влияния трансформации двухфазной фильтрации на формирование зон невыработанных запасов нефти // Записки Горного института. 2020. Т. 241. C. 68-82. DOI: 10.31897/PMI.2020.1.68
3. Гасумов Р.А. Причины отсутствия притоков пластовых флюидов при освоении скважин малых месторождений (на примере хадум-баталпашинского горизонта) // Записки Горного института. 2018. Т. 234. С. 630-636. DOI: 10.31897/PMI.2018.6.630
4. Rogatchev M.K., Sukhikh A.S., Kuznetsova A.N. Filtration tests of surfactant solutions effects on displacement efficiency oil from low-permeable polymictic reservoirs // Topical Issues of Rational use of Natural Resources-Proceedings of the International Forum-Contest of Young Researchers, 18-20 April 2018, St. Petersburg, Russia. CRC Press, 2018. P. 125-130.
5. Рогов Е.А. Исследование проницаемости призабойной зоны скважин при воздействии технологическими жидкостями // Записки Горного института. 2020. Т. 242. C. 169-173. DOI: 10.31897/PMI.2020.2.169
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献