Abstract
The methodology for testing pipeline steels is suggested on the assumption that for the destruction of pipes in field oil pipelines by the mechanism of grooving corrosion the simultaneous fulfillment of such conditions as the occurrence of scratches on the lower generatrix of the pipe, eventually growing into a channel in the form of a groove, emulsion enrichment with oxygen, presence of pipe wall metal in a stressed state, presence of chlorine-ion in the oil-water emulsion is required. Tests are suggested to be carried out in 3 % aqueous solution of NaCl with continuous aeration by air on bent plates 150×15×3 mm, made of the analyzed steel, the middle part of which is under the action of residual stresses σres, close to the level of maximum equivalent stresses σeqv in the wall of the oil pipeline, with the presence of a cut on this part on the inner side of the plate as an initiator of additional mechanical stresses. Using the value of the modulus of normal elasticity of the analyzed steel, the degree of residual strain of the elastic-plastic body from this material, corresponding to the value σres ≈ σeqv is calculated, based on which the plates are bent to the required deflection angle, after which the cut is applied to them. After keeping the plates in the corrosive medium for each of them the increase in depth of the cut as a result of corrosion of the walls by the corrosive medium is analyzed, from which the rate of steel K by the mechanism of grooving corrosion is calculated taking into account the duration of tests. Corrosion rate values for two pipe steel grades determined by the suggested procedure are given. The comparison of K values obtained leads to the conclusion about the higher resistance to grooving corrosion of 09G2S steel.
Publisher
Saint-Petersburg Mining University
Subject
Economic Geology,Geology,Geotechnical Engineering and Engineering Geology
Reference35 articles.
1. Барьеры реализации водородных инициатив в контексте устойчивого развития глобальной энергетики / В.С.Литвиненко, П.С.Цветков, М.В.Двойников, Г.В.Буслаев // Записки Горного института. 2020. Т. 244. C. 428-438. DOI: 10.31897/PMI.2020.4.5
2. Голдобина Л.А. Анализ причин коррозионных разрушений подземных трубопроводов и новые решения повышения стойкости стали к коррозии / Л.А.Голдобина, П.С.Орлов // Записки Горного института. 2016. Т. 219. C. 459-464. DOI: 10.18454/PMI.2016.3.459
3. Зайнуллин Р.С. Кинетика механохимического разрушения и ресурс трубопроводных систем // Проблемы сбора, подготовки и транспорта нефти и нефтепродуктов. 2005. № 65. С. 44-63. DOI: 10.17122/ntj-oil-2005-65-44-63
4. Исследование напряженно-деформированного состояния промысловых трубопроводов подвергшихся воздействию ручейковой коррозии / П.В.Бурков, В.П.Бурков, Д.С.Фатьянов, В.Ю.Тимофеев // Вестник Кузбасского государственного технического университета. 2018. № 3 (127). С. 5-12. DOI: 10.26730/1999-4125-2018-3-5-12
5. Исследование коррозионной стойкости конструкционных сталей в пластовой воде / С.Н.Виноградов, В.И.Волчихин, Е.В.Ширина, А.С.Мещеряков // Известия высших учебных заведений. Поволжский регион. Технические науки. 2008. № 4. С. 139-144.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献