Application of the resonant energy separation effect at natural gas reduction points in order to improve the energy efficiency of the gas distribution system

Author:

Schipachev AndreiORCID,Dmitrieva AlenaORCID

Abstract

Maintaining the gas temperature and the formation of gas hydrates is one of the main problems in the operation of gas pipelines. Development and implementation of new effective methods for heating the gas during gas reduction will reduce the cost of gas transportation, solve the problem of resource and energy saving in the fuel industry. Study is aimed at increasing the energy efficiency of the natural gas reduction process by using a resonant gas heater to maintain the set temperature at the outlet of the gas distribution station (GDS) and prevent possible hydrate formation and icing of the station equipment. Paper considers the implementation of fireless heating of natural gas and fuel gas savings of heaters due to the introduction of a thermoacoustic reducer, operating on the basis of the Hartmann – Sprenger resonance effect, into the scheme of the reduction unit. By analyzing the existing methods of energy separation and numerical modeling, the effectiveness of the resonant-type energy separation device is substantiated. Modification of the reduction unit by introducing energy separating devices into it will allow general or partial heating of natural gas by its own pressure energy. Developed technology will allow partial (in the future, complete) replacement of heat energy generation at a gas distribution station by burning natural gas.

Publisher

Saint-Petersburg Mining University

Subject

Economic Geology,Geology,Geotechnical Engineering and Engineering Geology

Reference38 articles.

1. Belousov A.E. Substantiation of the method for reducing natural gas in the gas distribution system using volumetric expanders: Avtoref. dis. … kand. tekhn. nauk. St. Petersburg: Sankt Peterburgskii gornyi universitet, 2018, p. 19 (in Russian).

2. Burtsev S.A., Leontev A.I. Study of the dissipative effects influence on temperature stratification in gas flows (re-view). Teplofizika vysokikh temperatur. 2014. Vol. 52. N 2, p. 310-322. DOI: 10.7868/S0040364413060069

3. Vigdorovich I.I., Leontev A.I. Energy separation of gases with small and large Prandtl numbers. Izvestiya Rossiiskoi akademii nauk. Mekhanika zhidkosti i gaza. 2013. N 6, p. 117-134 (in Russian).

4. Glaznev V.N., Korobeinikov Yu.G. Hartmann effect. Region of existence and vibration frequencies. Prikladnaya mekhanika i tekhnicheskaya fizika. 2001. Vol. 42. N 4, p. 62-67 (in Russian).

5. Gurin S.V. Development of a technology for quasi-isothermal pressure reduction for objects of the natural gas trans-portation and distribution system: Avtoref. diss. … kand. tekhn. nauk. Ufa: Ufimskii gosudarstvennyi aviatsionnyi tekhnicheskii universitet, 2008, p. 21 (in Russian).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3