Morphometric parameters of sulphide ores as a basis for selective ore dressing

Author:

Duryagina AsiyaORCID,Talovina IrinaORCID,Lieberwirth HolgerORCID,Ilalova ReginaORCID

Abstract

To assess the possibility of selective disintegration and reduction of overgrinding of hard-to-reproduce ores, optical microscopic and X-ray microtomographic studies were carried out and quantitative characteristics of morphological parameters of disseminated and rich cuprous ore samples from Norilsk-type Oktyabrsky deposit were identified. Among quantitative morphological parameters the most informative are area, perimeter, edge roughness, sphericity, elongation and average grain spacing for disseminated copper-nickel ores; area, perimeter, edge roughness and elongation for rich cuprous ores. The studied parameters are characterized by increased values and dispersion in ore zones, which is especially important for fine-grained ores, which are difficult to diagnose by optical methods. Three-dimensional modelling of the internal structure of sulphide mineralisation samples was carried out using computed X-ray microtomography, which allows observation of quantitative parameters of grains, aggregates and their distribution in the total rock volume and interrelationship with each other. The evaluation of rock pore space by computer microtomography made it possible to compare the results obtained with the strength characteristics of rocks and ores, including those on different types of crushers. The obtained quantitative characteristics of structural-textural parameters and analysis of grain size distribution of ore minerals allow us to evaluate the possibility of applying selective crushing at various stages of ore preparation

Publisher

Saint-Petersburg Mining University

Subject

Economic Geology,Geology,Geotechnical Engineering and Engineering Geology,Energy (miscellaneous)

Reference43 articles.

1. Litvinenko V.S. Digital Economy as a Factor in the Technological Development of the Mineral Sector // Natural Resources Research. 2020. Vol. 29. P. 1521-1541. DOI: 10.1007/s11053-019-09568-4

2. Matveeva V.A., Alekseenko A.V., Karthe D., Puzanov A.V. Manganese Pollution in Mining-Influenced Rivers and Lakes: Current State and Forecast under Climate Change in the Russian Arctic // Water. 2022. Vol. 14. Iss. 7. № 1091. DOI: 10.3390/w14071091

3. Пронин Е.М., Васильев В.Е., Цветков В.Ю. Факторы, определяющие устойчивое развитие предприятий минерально-сырьевого комплекса и их влияние на оценку результатов деятельности предприятий // Записки Горного института. 2011. Т. 191. С. 176-182.

4. Makhovikov A.B., Katuntsov E.V., Kosarev O.V., Tsvetkov P.S. Digital transformation in oil and gas extraction: Challenges and prospects. In Innovation-based development of the mineral resources sector. London: CRC Press, 2019. 614 p.

5. Alekseenko V.A., Shvydkaya N.V., Alekseenko A.V. et al. Element Accumulation Patterns of Native Plant Species under the Natural Geochemical Stress // Plants. 2021. Vol. 10. Iss. 1. № 33. DOI: 10.3390/plants10010033

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3