Numerical modeling of a double-walled spherical reservoir

Author:

Karavaichenko Mikhail,Gazaleev Linar

Abstract

Extensive and important class of multilayer shell structures is three-layer structures. In a three-layer structure, a rigid filler plays an important role, due to which the bearing layers are spaced that gives the layer stack high rigidity and durability with a relatively low weight. By combining the thicknesses of the bearing layers and the filler, the desired properties of a three-layer shell structure can be achieved. Compared with traditional single-walled, three-layer construction has increased rigidity and durability, which allows reducing the thickness and weight of the shells. In order to reduce the metal content of the spherical reservoir for storing liquefied gases, this work considers the design of a double-walled reservoir, in which the inter-wall space is filled with reinforced polyurethane. Numerical modeling made it possible to determine the parameters of the stress-strain state of the structure with an error of no more than 5 %. It has been established on the example of a reservoir with a volume of 4000 m3 that the spatial structure of the spherical reservoir wall can reduce the metal content up to 19 %. Field of application for the research results is the assessment of the stress-strain state of spherical reservoirs at their designing. Method for building the structure of a double-walled spherical reservoir in the SCAD software has been developed, which allows calculating the stress-strain state (SSS) by the finite element method. Numerical model of a double-walled spherical reservoir has been developed. It was found that to obtain calculation results with an error of P ≤ 5 % the size of the final element should not exceed 300×300×δ mm. Design of a double-walled spherical reservoir was investigated. Design parameters have been established to ensure the operational reliability of the structure with a decrease in metal content in comparison with a single-wall reservoir by 19 %.

Publisher

Saint-Petersburg Mining University

Subject

Economic Geology,Geology,Geotechnical Engineering and Engineering Geology

Reference15 articles.

1. Abashev D.R. Development of the model of elastoplastic deformation, fatigue criteria and methods for identifying material parameters of construction alloys: Avtoref. dis. … kand. fiz.-mat. nauk. Korolev: Tsentralnyi nauchno-issledovatelskii institut mashinostroeniya, 2016, p. 21 (in Russian).

2. Abdullin I.N. Modeling a girder filler in a three-layer structure. Poisk effektivnykh reshenii v protsesse sozdaniya i realizatsii nauchnykh razrabotok v rossiiskoi aviatsionnoi i raketnokosmicheskoi promyshlennosti: Mezhdunarodnaya nauchno-prakticheskaya konferentsiya “Poisk effektivnykh reshenii v protsesse sozdaniya i realizatsii nauchnykh razrabotok v rossiiskoi aviatsionnoi i raketnokosmicheskoi promyshlennosti”, Kazan, 5-8 avgusta 2014, p. 307-312 (in Russian).

3. Annin B.D., Volchkov Yu.M. Non-classical models for the theory of plates and shells. Prikladnaya mekhanika i tekhnicheskaya fizika. 2016. Vol. 57. N 5, p. 5-14. DOI: 10.15372/PMTF20160501 (in Russian).

4. Golovanov A.I., Tyuleneva O.N., Shigabutdinov A.F. Finite element method in statics and dynamics of thin-walled structures. Moscow: Fizmatlit, 2006, p. 392 (in Russian).

5. Gorshkov A.G., Starovoitov E.I., Yarovaya A.V. Mechanics of layered viscoelastoplastic structural elements. Moscow: Fizmatlit, 2003, p. 577 (in Russian).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3