Assessing the feasibility of off-grid photovoltaic systems for rural electrification

Author:

İSPİR Murat1ORCID,AKSOY Muharrem Hilmi1ORCID

Affiliation:

1. KONYA TECHNICAL UNIVERSITY

Abstract

In this investigation, the absence of an electricity grid in numerous locations, including military bases, tiny houses, and chalets, prompted the development of a model for providing electrical energy through an off-grid Photovoltaic (PV) system in Konya, Türkiye. The study delineates the daily energy consumption of a residential dwelling as 39,974 Wh/day, and the feasibility of satisfying this demand through the implementation of a 9.45 kWp PV system is scrutinized. The research encompasses the determination of optimal tilt and azimuth angles set at 35° and 0°, respectively. The maximum global effective irradiation intensity, recorded in August at 208.3 kWh/m², contrasts with the minimum intensity observed in December, registering at 106.2 kWh/m². Likewise, electricity production attained its zenith in August at 1,581.3 kWh, starkly contrasting its lowest level in December at 791 kWh. Modelling outcomes conclude that Solar Fraction (SF) values equate to unity during summer but fall below unity during winter. Furthermore, a surplus in electricity generation relative to demand is observed during the summer, resulting in the full charge of batteries. Evaluating the annual average SF, it is deduced that the modelled system fulfils 90.8% of the energy requirement. The Performance Ratio (PR), an additional pivotal parameter in PV systems, reaches its zenith at 0.865 in November and its nadir at 0.614 in August. This comprehensive study underscores the efficacy of the modelled off-grid PV system in meeting the energy demands of the selected residence, emphasizing the significance of seasonal variations and key performance metrics in assessing system performance.

Publisher

International Journal of Energy Applications and Technologies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3