Photovoltaic properties of Cu(In,Ga)(Se,Te)2 thin film solar cells with different tellurium amounts and a copper-poor stoichiometry

Author:

AĞCA Semih1ORCID,ÇANKAYA Güven1ORCID

Affiliation:

1. ANKARA YILDIRIM BEYAZIT ÜNİVERSİTESİ

Abstract

In this study, the impact of tellurium addition on the microstructure of the copper indium gallium selenide absorber layer with a copper-poor stoichiometry and the photovoltaic properties of SLG/Mo/CIGS/CdS/ZnO/ITO/Ni-Al-Ni solar cells was investigated. Absorber layer, CdS buffer, ZnO and ITO layers, and the Ni-Al-Ni front contact were produced using three-stage co-evaporation, chemical bath deposition, RF magnetron sputtering, and e-beam evaporation techniques, respectively. The thickness and the composition of the absorber layer were controlled in situ. NaF post deposition treatment were applied to the absorber layer. The addition of tellurium improved the crystal quality by increasing the average grain size and decreased the surface roughness. Decreasing surface roughness increased reflection and thus decreased the amount of sunlight absorbed, which in turn reduced current collection. Open-circuit voltage was effected by impurity level and the grain boundry recombination. While moderate tellurium addition reduced grain boundary recombination, excessive tellurium addition created stress, caused crack formation, and increased recombination by reducing crystal quality. The optimum tellurium amount in the copper-poor CIGS structure was found to be 1.1 atomic percent. The control of the microstructure of the absorber and the efficiency improvement of the solar cell were achieved successfully.

Publisher

Türkiye Enerji Stratejileri ve Politikalari Araştirma Merkezi (TESPAM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3