Funder
Gyeonggi-do Regional Research Center
Publisher
Korean Institute of Information Technology
Reference14 articles.
1. Nuclei Segmentation with Recurrent Residual Convolutional Neural Networks based U-Net (R2U-Net)
2. L. Li, M. Verma, Y. Nakashima, H. Nagahara, and R. Kawasaki, "IterNet: Retinal Image Segmentation Utilizing Structural Redundancy in Vessel Networks", IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3656-3665, 2020.
3. U-Net: Convolutional Networks for Biomedical Image Segmentation
4. O. Oktay, J. Schlemper, L. L. Folgoc, M. Lee, M. Heinrich, K. Misawa, and D. Rueckert, "Attention U-net: Learning Where to Look for the Pancreas", arXiv preprint arXiv:1804.03999, 2018.
5. Q. Yu, L. Xie, Y. Wang, Y. Zhou, E. K. Fishman, and A. L. Yuille, "Recurrent Saliency Transformation Network: Incorporating Multi-stage Visual Cues for Small Organ Segmentation", IEEE Conference on Computer Vision and Pattern Recognition, 2018.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献