Clinical Application of 3D-CISS MRI Sequences for Diagnosis and Surgical Planning of Spinal Arachnoid Diverticula and Adhesions in Dogs

Author:

Jovanovik Jelena,Driver Colin,Rusbridge Clare,Tauro Anna

Abstract

Objective Abnormalities within the spinal arachnoid space are often treated surgically, but they can be challenging to detect with conventional magnetic resonance imaging (MRI) sequences. 3D-CISS sequences are considered superior in evaluating structures surrounded by cerebrospinal fluid (CSF) due to the high signal-to-noise ratio, high contrast-to-noise ratio and intrinsic insensitivity to motion with minimal signal loss due to CSF pulsations. Our objective was to describe findings and advantages in adding 3D-CISS sequences to routine MRI in patients affected by spinal arachnoid diverticula (SAD) or arachnoid adhesions. Material and Methods This article is a retrospective review of medical records of 19 dogs admitted at Fitzpatrick Referrals between 2013 and 2017 that were diagnosed with SAD and confirmed surgically. Inclusion criterions were the presence of clinical signs compatible with compressive myelopathy and an MRI diagnosis, which included the 3D-CISS sequence. Our database was searched for additional 19 dogs diagnosed with other spinal lesions other than SAD that had the same MR sequences. All MR images were anonymized and evaluated by two assessors. Conclusion and Clinical Relevance 3D-CISS sequence appears to improve confidence in diagnosing and surgical planning (Mann–Whitney U-test: p < 0.0005), delineating SAD from other changes associated with abnormal CSF hydrodynamics and providing more anatomical details than conventional MRI sequences. The clinical data in combination with imaging findings would limit over interpretation, when concurrent pathology within the arachnoid space is present.

Publisher

Georg Thieme Verlag KG

Subject

General Veterinary,Animal Science and Zoology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3