Author:
Quinteros D. D.,Abuja G. A.,Tarkanian M.,Maranda L. S.,Bubeck K.,Kowaleski M. P.,García-López J. M.
Abstract
SummaryObjective: To determine if the mechanical properties (strength and stiffness) of a new prototype 4.5 mm broad locking plate (NP-LP) are comparable with those of a traditional 4.5 mm broad limited-contact self compression plate (LC-SCP), and to compare the bending and torsional properties of the NP-LP and LCSCP when used in osteotomized equine third metacarpal bones (MC3).Methods: The plates alone were tested in four-point bending single cycle to failure. The MC3-plate constructs were created with middiaphyseal osteotomies with a 1 cm gap. Constructs were tested in four-point bending single cycle to failure, four-point bending cyclic fatigue, and torsion single cycle to failure.Results: There were not any significant differences in bending strength and stiffness found between the two implants. The MC3-NP-LP construct was significantly stiffer than the MC3-LC-SCP in bending. No other biomechanical differences were found in bending, yield load in torsion, or mean composite rigidity. Mean cycles to failure for bending fatigue testing were similar for both constructs.Clinical significance: The NP-LP was comparable to the LC-SCP in intrinsic, as well as structural properties. The NP-LP construct was more rigid than the LC-SCP construct under four-point bending, and both constructs behaved similarly under four-point bending cyclic fatigue testing and torsion single cycle to failure. The new NP-LP implant fixation is biomechanically comparable to the LC-SCP in a simulated MC3 fracture.
Subject
General Veterinary,Animal Science and Zoology
Reference27 articles.
1. Wagner M. General principles for the clinical use of the LCP. Injury 2003; 34 Suppl 2: B31-B42.
2. Schelegel U, Perren SM. Surgical aspects of infection involving osteosynthesis implants: implant design and resistance to local infection. Injury 2006; 37 Suppl 2: S67-S73.
3. Tong, GO. History and evolution of MIPO. In: Tong GO, Bavonratanavech S, editors. AO Manual of Fracture Management, Minimally Invasive Plate Osteosynthesis (MIPO). Davos, Switzerland: AO Publishing, Thieme; 2007. pg. 3-7
4. Auer JA. Metacarpal (-tarsal) shaft. In: Fackelman G, Auer JA, Numamaker DM, editors. AO principles of Equine osteosynthesis. Davos, Switzerland: AO Publishing, Thieme; 1999. pg. 194.
5. Surgical management of complete diaphyseal third metacarpal and metatarsal bone fractures: Clinical outcome in 10 mature horses and 11 foals