The relevance of threaded external skeletal fixation pin insertion speed in canine bone with and without predrilling

Author:

Rochat M. C.,Snider T. A.,Payton M. E.,Walker J. T.

Abstract

SummaryObjectives: The effects of insertion speed in revolutions per minute (RPM) and pilot hole predrilling for placement of threaded external skeletal fixation pins on temperature and morphological damage in cortical bone were evaluated. The null hypothesis states that insertion speed and predrilling will have no significant effect on temperature and morphological damage.Methods: Fixation pins were inserted into cadaveric canine femurs at speeds of 700 RPM and 150 RPM, with and without predrilling. Temperature was measured at each cortex 0.5 mm and 3.0 mm from each insertion site. Samples were examined grossly and by scanning electron microscopy for evidence of morphological damage. Data were analysed for maximum temperature, temperature increase, sites above thermal necrosis thresholds, microcracks, thread quality and gross damage.Results: Predrilling had a significant effect on maximum temperature, temperature increase, sites exceeding necrosis thresholds, microcracks, thread quality and gross damage. Speed of insertion had no significant effect on any of the measured parameters following predrilling, but had a significant effect on thread quality without predrilling.Clinical significance: Our results fail to reject the null hypothesis concerning insertion speed, which had no significant effect on thermal damage, and minimal effect on morphological damage, which was negated by predrilling. Our results reject the null hypothesis concerning predrilling and support the practice of predrilling fixation pin insertion sites.

Funder

Cohn Family Chair for Small Animals and the Oklahoma State University, Research Advisory Committee

Microscopy Laboratory, Oklahoma State University

Publisher

Georg Thieme Verlag KG

Subject

General Veterinary,Animal Science and Zoology

Reference22 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3