The Processing Spatial Data for Statistical Modeling and Visualization Case study: INLA model for COVID-19 in Alabama, USA

Author:

Engidaw Getachew,Terdik GyörgyORCID

Abstract

This research emphasizes the visualization of spatial data for statistical modelling and analysis of the relative risk associated with the COVID-19 pandemic in Alabama, USA. We used Bayesian analysis and the Integrated Nested Laplace Approximation (INLA) approach on data ranging from March 11, 2020, to December 31, 2022, which included observed COVID-19 cases, the population for each of the Alabama counties, and a Geographical map of the state. The geographical distribution of COVID-19’s relative risk was determined using various spatial statistical techniques, indicating high-risk locations. The study used Besag-York-Mollié (BYM) models to assess the posterior relative risk of COVID-19, and it found a statistically significant average decrease in COVID-19 case rates across the 67 counties evaluated. These findings have practical implications for evidence-based policymaking in pandemic prevention, mitigation, and preparation.

Publisher

Szechenyi Istvan University

Reference55 articles.

1. T. Alamo D. G. Reina, P. Millán. Data-driven methods to monitor, model, forecast and control COVID-19 pandemic: Leveraging data science, epidemiology and control theory. arXiv preprint arXiv: 2006.01731 (2020). https://doi.org/10.1016/j.coi.2020.09.011

2. M. A. S. Alhdiri N. A. Samat, Z. Mohamed. Disease mapping for stomach cancer in libya based on besag–york–mollié (bym) model. Asian Pacific Journal of Cancer Prevention: APJCP 18 (6) (2017) 1479. https://doi.org/10.1007/s11356-022-23319-6

3. M. P. Armstrong G. Rushton, D. L. Zim- merman. Geographically masking health data to preserve confidentiality. Statistics in medicine 18 (5) (1999) pp. 497–525. https://doi.org/10.1002/(SICI)1097- 0258(19990315)18:5

4. J. Besag J. York, A. Mollié. Bayesian image restoration, with two applications in spatial statis- tics. Annals of the institute of statistical mathematics 43 (1991) pp. 1–20. https://doi.org/10.1007/BF00058655

5. M. Blangiardo, M. Cameletti. Spatial and spatio-temporal Bayesian models with R-INLA (2015). John Wiley & Sons.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3