Carbon cycle: ESP and UAV data processing approaches for forest ecosystem monitoring examples

Author:

Platonova M. V.1,Kotler V. D.1,Kukharskii A. V.1,Ivanov S. Yu.1

Affiliation:

1. Novosibirsk State University

Abstract

The review article provides a comprehensive overview of modern methods and approaches for processing large volumes of observational data in the context of monitoring forest ecosystems. The article shows examples of processing various data obtained using Earth remote sensing (ERS) and unmanned aerial vehicles (UAVs). Particular attention is paid to assessing the carbon cycle; the practice of using machine learning methods in processing monitoring data is also discussed in detail, as they play a key role in increasing the accuracy of the resulting estimates. The article also discusses modern geographic information systems designed for complex analysis of data from various natural complexes.

Publisher

Trofimuk Institute of Petroleum Geology and Geophysics (SB RAS)

Reference24 articles.

1. Baldocchi D., Falge E., Gu L., Olson R., Hollinger D., Running S., Anthoni P., Bernhofer Ch., Davis K., Evans R., Fuentes J., Goldstein A., Katul G., Law B., Lee X., Malhi Y., Meyers T., Munger W., Oechel W., Paw K.T., Pilegaard K., Schmid H.P., Valentini R., Verma S., Vesala T., Wilson K., Wofsy S. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities // Bulletin of the American Meteorological Society. – 2001. – Vol. 82 (11). – P. 2415–2434, doi: 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2.

2. Bourgoin C., Blanc L., Bailly J.S., Cornu G., Berenguer E., Oszwald J., Tritsch I., Laurent, F., Hasan, A.F., Sist, P., Gond V. The potential of multisource remote sensing for mapping the biomass of a degraded Amazonian forest // Forests. – 2018. – Vol. 9. – Article 303, doi: 10.3390/f9060303.

3. Brandt L.A., Derby Lewis A., Fahey R.T., Scott L., Darling L., Swanston C.W. A framework for adapting urban forests to climate change // Environmental Science and Policy. – 2016. – Vol. 66. – P. 393–402, doi: 10.1016/j.envsci.2016.06.005.

4. Carreiras J.M.B., Melo J.B., Vasconcelos M.J. Estimating the above-ground biomass in Miombo savanna woodlands using L-band synthetic aperture radar data // Remote Sensing. – 2013. – Vol. 5. – P. 1524–1548, doi: 10.3390/rs5041524.

5. Clark M.L., Aide T.M., Grau H.R., Riner G. A scalable approach to mapping annual land cover at 250 m using MODIS time series data: A case study in the Dry Chaco ecoregion of South America // Remote Sensing of Environment. – 2010. – Vol. 114 (11). – P. 2816–2832, doi: 10.1016/j.rse.2010.07.001.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3