Performance Prediction, Optimisation and Validation of a CNG Engine Intake Manifold of a Commercial Vehicle Using Transient CFD Analysis

Author:

Geetesh Waghela ,Tushar A Patil ,Bhoopendra Tiwari ,Ashok Kumar Patidar

Abstract

Developing countries like India have large consumer markets driven by huge demands. Commercial vehicles play a critical role in full filing these demands. Commercial vehicles increasingly face stringent emission norms criteria and hence designing an ICE-powertrain with optimum operating efficiency becomes paramount. Intake manifold is the critical part of an internal combustion engine that supplies fuel/ air mixture to all the cylinders combustion chambers. It ensures a uniform mixture at cylinder inlet for better mixing inside the cylinders for better volumetric efficiency. Uneven distribution of fuel/air mixture causes unstable torque and unburnt fuel which fails to meet the emission norms. It also results in uneven temperatures in each cylinder because of cylinder misfiring. In current paper, 3D Computational Fluid Dynamics (CFD) simulations are carried out to investigate the variance and uniformity of CNG/air mixture at the outlet of intake manifold. Commercial CFD tool Ansys Fluent is used to study the flow distribution of mixture inside the manifold and runners. Initial estimation of flow pattern is done by performing a steady state simulation to predict the uniformity index of CNG at cylinder inlet. For detailed investigation, transient simulation is performed by taking fresh air and CNG mass flow rate as a function of crank angle. In this paper, mesh dependence study was done initially to achieve an optimum cell count with good accuracy. A detailed transient analysis using multi-species modelling for air & CNG was done using automated scripts with time steps as small as 1 degree crank angle rotation coupled with injection pressure and injection timing study. This helped to identify critical areas and optimise the design to improve the mass flow rate variance from 15-20% for baseline case to 6-7% for final design, and also improve the uniformity index. It also helped reduce the CNG engine mis-firing issue. The results have been well validated with Laboratory Test Results.    

Publisher

BSP Books Private Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3