Accelerated Life Prediction of Automotive Elastomers using Thermo-Gravimetric Analysis

Author:

Moqtik Bawase ,Sushil Chaudhari ,Dr. S. S. Thipse

Abstract

Polymers find their use in a variety of products and their share in a particular application like automobile components such as gaskets, O-ring, Sealing, Hoses, Fuel line, Fuel filter necks, float, etc. in vehicle fuel system is increasing day by day. In some applications a component made from polymer is subjected to elevated temperatures for prolonged durations and are prone to failure due to thermal stresses. Therefore, understanding of failure mechanism is important to predict the life of polymer particularly in cases of critical applications and where it is used for longer durations. The Arrhenius equation is utilized for prediction of assessment of life of polymers through due to of the impact of temperature over time. Lifetime predictions are conventionally made by exposing sample polymers to various temperatures for prolonged duration with periodic measurement of desired properties, which is a very time-consuming process. In present research, two materials viz., FKM and PVC/NBR blend were analyzed using thermo-gravimetric assessment to simulate failure utilizing the decomposition behavior caused by thermal effects. The thermo-gravimetric analysis was performed at various heating rates of 5 to 25 °C/min. The rate of change of thermal decomposition of FKM and PVC/NBR blend were evaluated using Arrhenius equation. Different weight-loss percentages (5%, 10% and 20%) during TGA were considered as failure criterion. Activation energy (E) was calculated and thermal life of was predicted for both the materials. This study provided a quick method with considerable reduction in efforts, cost and time for prediction of life of polymers by using kinetics parameters derived from experiments conducted at higher temperatures.

Publisher

BSP Books Private Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3