Mathematical Model and Simulation for Improving Brake, Bump and Roll Steers in Light Commercial Vehicle (LCV)

Author:

Mahadevan Pichandi ,Satish Kumar R

Abstract

Due to recent infrastructural developments and emerging competitive automotive market in India, there is seen a huge shift in customer demand and vehicle drivability pattern for small commercial vehicles. Various factors contributing to driver’s fatigue include driver negligence, inappropriate driving habits and vehicle inherent design error due to which a driver is forced to make frequent steering wheel corrections so as to make the vehicle run in a straight line. Thus, optimization of steering, suspension and front axle geometry becomes important for improving the overall vehicle drivability and reducing the driver fatigue. Mentioned herewith are the major kinematic characteristics in a vehicle which plays vital role for ensuring vehicle improved drivability – Brake steer, Bump steer, Roll steer and Ackerman Geometry. As on today, the above analysis for deriving optimized linkages hard points for steering, suspension and front axle system are done in customized Multi body dynamics software’s like ADAMS/Trucksim. Although the derived hard points in such MBD software’s are precise yet there are several drawbacks in such approach like increase in overall project time plan, mainly due to the vehicle packaging issues for the proposed hard points and also these software customized license and AMC are quite high which increases the overall operating cost of a project. In this paper, an approach has been developed so as to derive these linkages hard points through mathematical calculation and kinematic simulation model in product design Catia platform itself. This helps the designer to derive the optimized hard points of linkages for “n” number of design iterations at the concept stage itself. Thus, this design methodology saves not only on the project design cost but also it reduces the overall product design lifecycle and gives the respective designer to choose the optimum hard point based upon the vehicle packaging feasibility Brake steer, Bump steer, Roll steer, Catia 2D layout, Camber, TCD, Ackermann error.    

Publisher

BSP Books Private Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3