Nanosensors: Unveiling the Invisible-Advancement in Drug Detection

Author:

Nikrita ,Bikash Medhi

Abstract

Introduction  Nanotechnology represents the designing, synthesis, characterization, and application of materials and devices whose size ranges in nanoscale is 1-100nm1. Which can be defined by the term, technology on the nanoscale. With the change in structure and size nanoscale material possesses distinct enhanced physiochemical properties due to dramatic changes from the bulk material to reduced material of size below 100nm2. Nanotechnology applications were first observed in Lycurgus glass and Medieval church windows which changed color in different lighting conditions due to nanoparticles with size ranges from 50-100nm. However, laureate Richard Feynman, an American physicist is considered the father of nanotechnology3. The nanoscale development has various importance involving possessing a high surface area which makes it suitable for drug delivery and other applications, it possesses numerous microscopic and macroscopic properties, and they form the combination of material science with biology, other than all the mentioned importance of nanotechnology the macroscopic materials made up of the nanoscale material possess high density which makes the nanomaterial batter conductor4. Different methods have been adopted to synthesize nanomaterials such as Top-Down Approach, Bottom-Up Approach, and Hybrid Approach3-5. 

Publisher

BSP Books Private Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3