MgAl2O4-based glass ceramics synthesized by thermal plasma melting

Author:

Shekhovtsov V. V.1

Affiliation:

1. Tomsk State University of Architecture and Building

Abstract

The relevance of research and application of glass-ceramic materials based on spinel (MgAl2O4) is due to its unique properties such as strength, heat resistance, and high thermal conductivity. These properties make spinel a popular material for creating hi-tech products and coatings.The paper presents the experimental results of the production spinel-based glass ceramics with the silicon dioxide content 10 to 50 wt.%. Thermal plasma melting is used obtain glassceramic samples, at 10 kW power and 90 s melting time. The obtained samples are studied by XRF, EDX, IRFS, SEM methods.It is shown that the introduction of SiO2 in the amount of not over 20 wt.% into the mixture with stoichiometric spinel, phase transformations with the formation of binary 2MgO·SiO2, MgO·SiO2, 3Al2O3·2SiO2 compounds do not occur. With increasing SiO2 content from 30 to 50 wt.%, the effect from SiO2 is significant, a quasi-amorphous phase appears in the material matrix. At the same time, the SiO2 content of 30 wt.% provides weak intensity of the stoichiometric crystalline phase MgAl2O4 at 2θ = 36.6, 44.7, 59.3, 65.4 degrees. Samples with the SiO2 content 40 to 50 wt.% are X-ray amorphous. In this case, the diffusion halo narrows due to the dominance of Si4+ during the lattice formation. This phenomenon is also confirmed by IRFS results.Based on SEM observations, a complete dissolution of the MgAl2O4 crystalline phase occurs. When the content of SiO2 is 30 to 40 wt.%, dissolution of the spinel crystalline phase is accompanied by the formation of local regions rich in Mg and Al, i.e., differentiation proceeds in the condensed phase.The research results will be of interest for the development of heat-shielding materials, and can be used for the catalyst development, in electronics and other industries producing hi-tech ceramics.

Publisher

Tomsk State University of Architecture and Building

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spectral pyrometry of non-metallic materials at plasma heating, melting and cooling (Tomsk);Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture;2023-10-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3