PsA inhibits the development of bovine embryos through epigenetic and oxidative stress

Author:

Ma Xin1,Zhan Chenglin1,Ma Panpan12,Jing Guo1,Liyan Su1,Zhang Yanlin2,Jing Zhao1,Liu Hongyu1,Wang Jun1,Lu Wenfa1

Affiliation:

1. College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China

2. JOINN Laboratories Co, Ltd, Beijing, China

Abstract

Abstract OBJECTIVE Histone deacetylases (HDACs) are the key regulators involved in the process of embryo development and tumor progression and are often dysregulated in numerous disordered cells, including tumor cells and somatic cell nuclear transfer (SCNT) embryos. Psammaplin A (PsA), a natural small-molecular therapeutic agent, is a potent histone deacetylase inhibitor (HDACi) that alters the regulation of histone. SAMPLES Approximately 2,400 bovine parthenogenetic (PA) embryos. PROCEDURES To investigate the effect of PsA on bovine preimplanted embryos, we analyzed the preimplantation development of PA embryos treated with PsA in this study. RESULTS The blastocyst formation rate of bovine PA embryos decreased sharply with an increase in concentration and duration. Furthermore, the expression of the pluripotency-related gene Nanog was decreased, and the inhibitory effects on histone deacetylases 1 (HDAC1) and DNA methylation transferase 1 (DNMT1) were observed in bovine PA embryos. The acetylation level of histone H3 lysine 9 (H3K9) was enhanced by a PsA treatment of 10 μM for 6 h, while the DNA methylation appeared unchanged. Interestingly, we also found that PsA treatment enhanced the intracellular reactive oxygen species (ROS) generation and decreased the intracellular mitochondrial membrane potential (MMP)- and superoxide dismutase 1 (SOD1)-induced oxidative stress. Our findings improve the understanding of HDAC in embryo development and provide a theoretical basis and reproduction toxicity evaluation for the application of PsA. CLINICAL RELEVANCE These results indicate that PsA inhibits the development of bovine preimplantation PA embryos, supplying data for the PsA clinical application concentration to avoid reproductive toxicity. In addition, the reproduction toxic effect of PsA may be modulated through increased oxidative stress on the bovine PA embryo, suggesting that PsA in combination with antioxidants, for example, melatonin, might be an effective clinical application strategy.

Publisher

American Veterinary Medical Association (AVMA)

Subject

General Veterinary,General Medicine

Reference39 articles.

1. Diverse applications of marine macroalgae;Leandro A,2019

2. Inhibition of sortase-mediated Staphylococcus aureus adhesion to fibronectin via fibronectin-binding protein by sortase inhibitors;Oh KB,2006

3. Psammaplin A, a natural bromotyrosine derivative from a sponge, possesses the antibacterial activity against methicillin-resistant Staphylococcus aureus and the DNA gyrase-inhibitory activity;Kim D,1999

4. Epigenetic modulator UVI5008 inhibits MRSA by interfering with bacterial gyrase;Franci G,2018

5. In vitro and in vivo anti-Vibrio vulnificus activity of psammaplin A, a natural marine compound;Lee BC,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3