Anti-Tuberculosis Drugs and Mechanisms of Action: Review

Author:

Abstract

Tuberculosis is the most important communicable disease in the world caused by the bacillus Mycobacterium tuberculosis. Mycobacterium is intrinsically resistant to most antibiotics and grows more slowly than other bacteria. Antibiotics are only active against rapidly growing bacterial cells. The cell wall of M. tuberculosis made up of lipid-rich polysaccharides, which are impermeable to many antibacterial agents as a result of poor penetration of drugs they develop resistance with increased level of antibiotic efflux and become Multiple Drug Resistance (MDRs). Prevention and quality diagnosis and treatment of MDR- and XDR-TB are part of the crucial interventions included in the new World Health Organization (WHO) End TB Strategy, which is focused on the goal of TB elimination program. Combinations of two or more drugs are used to overcome the obstacles to prevent emergence of resistance during the course of treatment. Based on drugs used for mycobacterial infections, treatment is administered for months to years. Anti-tuberculosis drugs are classified based on clinical response as first-line drugs and second-line drugs. First Line drugs with high anti-tubercular efficacy as well as low toxicity – routinely used Isoniazid (H), Rifampin (R), Pyrazinamide (Z), Isoniazid (H), Rifampin (R), Pyrazinamide (Z), Ethambutol (E), Streptomycin (S) – HRZES. Second Line drugs are with low anti-tubercular efficacy or high toxicity Paraminosalicylic Acid, Cycloserine, Kanamycin, Amikacin, Ciprofloxacin, Olfloxacin, Clarithromycin, and Azithromycin. Modes of action of majority of the anti-mycobacterial drugs either inhibit their cell wall synthesis or their protein synthesis. In spite of the limitations, the evidence accumulated in the last few years suggests that a new classification of the anti-TB drugs is necessary in the near future.

Publisher

Uniscience Publishers LLC

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Reference41 articles.

1. 1. Chakaya, J., Petersen, E., Nantanda, R., Mungai, B. N., Migliori, G. B., Amanullah, F., Lungu, P., Ntoumi, F., Kumarasamy, N., Maeurer, M. & Zumla, A. (2022). The WHO Global tuberculosis 2021 report - not so good news and turning the tide back to end TB. Int J Infect Dis., 124(Suppl 1), S26-S29. DOI: https://doi.org/10.1016/j.ijid.2022.03.011

2. 2. Zumla, A., Nahid, P. & Cole, S. T. (2013). Advances in the development of new tuberculosis drugs and treatment regimens. Nat Rev Drug Discov., 12(5), 388–404. DOI: https://doi.org/10.1038/nrd4001

3. 3. Kim, D. H., Kim, H. J., Park, S. K., Kong, S. J., Kim, Y. S., Kim, T. H., Kim, E. K., Lee, K. M., Lee, S. S., Park, J. S., Koh, W. J., Lee, C. H., Kim, J. Y. & Shim, T. S. (2008). Treatment outcomes and long-term survival in patients with extensively drug-resistant tuberculosis. Am J Respir Crit Care Med., 178(10), 1075–82. DOI: https://doi.org/10.1164/rccm.200801-132oc

4. 4. Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S. V., Eiglmeier, K., Gas, S., Barry, C.E 3rd, Tekaia, F., Badcock, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R., Devlin, K., Feltwell, T. &………. Barrell, B. G. (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 393(6685), 537-544. DOI: https://doi.org/10.1038/31159

5. 5. Yan, W., Zheng, Y., Dou, C., Zhang, G., Arnaout, T. & Cheng, W. (2022). The pathogenic mechanism of Mycobacterium tuberculosis: implication for new drug development. Mol Biomed, 3(1), 48. DOI: https://doi.org/10.1186/s43556-022-00106-y

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3